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Abstract

As continuous-wave time-of-flight (C-ToF) cameras be-

come popular in 3D imaging applications, they need to con-

tend with the problem of multi-camera interference (MCI).

In a multi-camera environment, a ToF camera may receive

light from the sources of other cameras, resulting in large

depth errors. In this paper, we propose stochastic expo-

sure coding (SEC), a novel approach for mitigating. SEC

involves dividing a camera’s integration time into multiple

slots, and switching the camera off and on stochastically

during each slot. This approach has two benefits. First, by

appropriately choosing the on probability for each slot, the

camera can effectively filter out both the AC and DC com-

ponents of interfering signals, thereby mitigating depth er-

rors while also maintaining high signal-to-noise ratio. This

enables high accuracy depth recovery with low power con-

sumption. Second, this approach can be implemented with-

out modifying the C-ToF camera’s coding functions, and

thus, can be used with a wide range of cameras with min-

imal changes. We demonstrate the performance benefits of

SEC with theoretical analysis, simulations and real experi-

ments, across a wide range of imaging scenarios.

1. Introduction

Time-of-flight (ToF) cameras are fast becoming the

method of choice in various 3D imaging applications, such

as 3D mapping [8, 13], human-machine interaction [5], aug-

mented reality [11] and robot navigation [17]. ToF cameras

have compact form-factors and low computational com-

plexity, resulting in emergence of several commodity ToF

cameras [2, 1]. As these cameras become ubiquitous in mo-

bile devices and cell-phones, they will face an important

problem: multi-camera interference (MCI). This is espe-

cially critical for continuous wave ToF (C-ToF) imaging,

where the light source emits light continuously. When sev-

eral C-ToF cameras capture the same scene concurrently,

each sensor may receive light from the sources of other

cameras. This interfering signal prevents correct depth esti-

mation, resulting in potentially large, structured errors.

One way to address MCI is to use orthogonal coding

functions for different C-ToF cameras, for example, sinu-

soids of different frequencies or phases [23, 18, 16], or

pseudo-random functions [6, 7, 10]. These approaches,

while theoretically capable of mitigating interference, have

a practical limitation. The intensity of light emitted by a

ToF camera’s source is positive, with both a constant (DC)

and an oscillating (AC) component; the depth information

is encoded in the time-shift of the AC component. Although

the orthogonal-coding approaches can remove the AC inter-

ference, the DC interference remains. The DC interference

acts as additional ambient light, resulting in higher photon

noise. As the number of interfering cameras increases, the

signal-to-noise ratio (SNR) can degrade considerably, mak-

ing it challenging to recover meaningful information.

We propose a novel MCI reduction technique with the

goal of mitigating both DC and AC interference. Our ap-

proach is based on time-division multiple access (TDMA),

a widely used scheme for facilitating multi-user access

of shared communication channels. In TDMA, a single,

shared communication channel is divided into multiple time

slots, one slot assigned to each user [21]. In order to pre-

vent interference, the timing across different users must be

synchronized, which is done by a central authority, e.g.,

base stations. Applying TDMA directly for addressing MCI

will require high-speed temporal synchronization of differ-

ent cameras, which, unfortunately, is challenging [7].

Stochastic exposure coding: Is it possible to implement

a TDMA-like approach without synchronization? Our key

idea is to leverage stochasticity to avoid explicit synchro-

nization. The proposed approach, called stochastic expo-

sure coding (SEC), divides the total exposure time of each

camera into multiple slots. In each slot, the camera and the

source are turned on with a certain probability pON . By

design, if a slot doesn’t have a clash, i.e., only one camera

is active during that slot, both DC and AC interference are

avoided since the camera receives light only from its own

source. Since the approach is stochastic, without explicit

synchronization, there may still be clashes. We design a

simple, light-weight clash-check algorithm to identify and

discard clash-slots so they do not affect depth estimation. 1

1This approach is similar to random-access protocols in communica-

tion such as ALOHA [3] and CSMA [14] in that packets are sent randomly.

However, while communication protocols need to re-send packets when-

ever collision happens, in our case, we can simply discard clashed slots.

This is because in communication, each packet has unique information,

whereas in our case, all slots have the same depth information.
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Figure 1. Layered C-ToF coding. The proposed approach oper-

ates in the exposure coding layer, where the camera and the source

are modulated at micro/millisecond time scales. In contrast, exist-

ing MCI reduction approaches operate in the lower depth coding

layer, where modulation is performed at nanosecond time scales.

What is the optimal pON? This is a critical question that

must be addressed for the proposed approach to be success-

ful. A high pON will increase the likelihood of clashes

(multiple simultaneously active cameras), resulting in in-

terference and depth errors. On the other hand, if pON is

too low, although the clashes are avoided, the cameras are

inactive during most of the integration time, and thus, don’t

receive sufficient signal. We perform a detailed theoretical

analysis, and determine the optimal pON , given system con-

straints and the number of interfering cameras. This enables

each source to send light sufficiently sparsely to mitigate

interference without synchronization, while maintaining a

high SNR, for a fixed time and power budget.

Layered view of C-ToF coding: A key benefit of the pro-

posed SEC approach is that it does not need to modify the

C-ToF camera’s coding functions, and thus, can be imple-

mented without extensive hardware modifications. SEC can

be implemented by rapidly switching the camera off and on

during the integration time, in a way reminiscent of tempo-

ral exposure coding for motion deblurring [19]. This creates

a layered view of C-ToF camera coding, as shown in Fig-

ure 1. Existing approaches for MCI reduction operate in the

depth coding layer since they change the camera’s coding

functions at nanosecond time scales. In contrast, SEC op-

erates at a higher exposure coding layer by modulating the

camera and source at micro/millisecond scales.

Practical implications: SEC and existing MCI reduction

approaches can be used in a complementary manner be-

cause they operate in different layers. We show, via theo-

retical analysis, simulations and hardware experiments that

such combined multi-layer coding approaches significantly

outperform existing methods. The proposed approaches re-

duce both DC and AC interference, making it possible to

achieve high SNR while consuming low power. Because

they require minimal modifications to existing C-ToF sys-

tems, these approaches are broadly applicable for 3D imag-

ing in low-complexity, power-constrained mobile devices.

2. Related Work

Most existing approaches for MCI reduction rely on or-

thogonal functions, such as sinusoids of different modu-

lation frequencies for different cameras [20], and pseudo-

noise (PN) sequences [6, 7]. Other approaches divide the

total integration time into multiple time slots and randomly

assign one of predetermined phases to each slot [23, 18, 16].

While all these approaches reduce only AC interference, our

goal is to design methods that mitigate both AC and DC in-

terference. Another recent approach for handling MCI is

to project light only along a planar sheet which is scanned

over the scene. Since only a portion of the scene is illumi-

nated at a time, the chance of interference by other cameras

is reduced [4]. Although this approach can also reduce DC

interference, it requires mechanical scanning. In contrast,

our approach can be implemented without moving parts.

3. Mathematical Preliminaries

C-ToF Image Formation Model: A C-ToF camera

consists of a (typically co-located) camera and a light

source [15]. The intensity of the light source is temporally

modulated as a periodic function M(t), (M(t) ≥ 0) with

period T0. The light emitted by the source travels to the

scene of interest, and is reflected back toward the camera.

The radiance of the reflected light incident on a sensor pixel

p is a time-shifted and scaled version of M(t):

R(p; t) = αPsM

(

t− 2d

c

)

, (1)

where d is the distance between the camera and the scene

point imaged at p, c is the speed of light. Ps is av-

erage power of the light source with an assumption of
1

T0

∫

T0

M(t) dt = 1. α is a scene-dependent scale fac-

tor that contains scene albedo, reflectance properties and

light fall-off. The camera then electronically computes the

correlation between R(p; t) and a periodic demodulation

function D(t) (0 ≤ D(t) ≤ 1)2 with the same frequency as

M(t). The intensity value C(p; d) measured at pixel p is

given as the correlation between R(p; t) and D(t):

C(p; d) = s

∫

T

(R(t; d) + Pa)D(t) dt, (2)

2Several C-ToF camera architectures [15, 6] use a bipolar demodulation

functions (−1 ≤ D(t) ≤ 1). For ease of analysis, we consider unipolar

D(t) (0 ≤ D(t) ≤ 1). All the results and analysis in the paper can be

generalized to bipolar D(t).
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Figure 2. Multi-camera interference and interference reduction in C-ToF imaging. (a) In C-ToF imaging, depths are recovered from

the phases of the measured waveforms. (b) If there are multiple cameras, interfering sources corrupt the measured waveforms, resulting

in systematic depth errors. (c) Conventional MCI reduction approaches reduce systematic errors by removing AC interference, but DC

interference remains, resulting in lower SNR and random depth errors due to higher photon noise. (d) Our approach mitigates both AC and

DC interference, thus reducing both systematic and random depth errors.

where s is a camera-dependent scale factor encapsulating

sensor gain and sensitivity, T is the total integration time,

and Pa is average power of ambient light incident on the

scene (e.g., due to sunlight in outdoor operation). In order

to estimate the scene depths, several (≥ 3) differentC(p; d)
values are measured, by using different pairs of modulation

and demodulation functions [15].

3.1. Multi­Camera Interference in C­ToF Imaging

Consider a scenario where multiple C-ToF cameras are

simultaneously illuminating and imaging a scene point. The

total intensity measured by one of the cameras (referred to

as the primary camera) is given by:

Cmult(d) = C(d) +

N∑

n=1

Cn(d)

︸ ︷︷ ︸

multi-camera interference

, (3)

where N is the number of interfering cameras, C(d) is the

intensity measured by the primary camera due to its own

source (Eq. 2), and Cn(d) = s
∫

T
Rn(t)D(t)dt is the mea-

sured intensity due to the nth source. Rn(t) is the radi-

ance received by the primary camera due to light emitted

by the nth source. We drop the argument p for brevity. The

summation term in Eq. 3 corrupts the true correlation value

C(d), thus resulting in erroneous depth estimates.

Example with sinusoid coding: In a C-ToF camera with

sinusoid coding, both modulation M(t) and demodulation

D(t) functions are sinusoids of the same frequency (homo-

dyne). The camera takes K ≥ 3 intensity measurements

(Eq. 2). Each measurement Ck(d), k ∈ {1, . . . ,K} is

taken by shifting the demodulation function D(t) by a dif-

ferent amount ψk, while M(t) remains fixed. For exam-

ple, if K = 4, [ψ1, ψ2, ψ3, ψ4] = [0, π
2
, π, 3π

2
]. The set of

measurements
{
Ck(d)

}
, k ∈ {1, . . . ,K} is defined as the

measurement waveform. For sinusoid coding, the measure-

ment waveform is a sinusoid as a function of the shift ψk, as

shown in Fig. 2 (a). Let φ be the phase of the measurements

waveform sinusoid. Scene depth d is proportional to φ, and

can be recovered by simple, analytic expressions [12].

If multiple cameras simultaneously image a scene point,

a camera receives light from the interfering sources as well

as its own source. Assuming all the sources use sinusoids of

the same frequency, the intensities
{
Ck

n

}
, k ∈ {1, . . . ,K}

measured by the camera due to the nth source also form a si-

nusoid. The total measurement
{
Ck

mult

}
, k ∈ {1, . . . ,K}

(Eq. 3) is the sum of these individual sinusoids, and thus,

also forms a sinusoid. This is shown in Fig. 2 (b). How-

ever, since the phases φn of the individual sinusoids (one

due to each interfering source) may be different, the phase

of the total measurement waveform may differ from the true

phase, resulting in systematic, potentially large depth errors.

3.2. Orthogonal Coding for Mitigating Interference

One way to mitigate multi-camera interference (MCI)

is to ensure that the intensities
{
Ck

n

}
, k ∈ {1, . . . ,K}

due to an interfering source form a constant waveform, i.e.,

Ck
n = Cn, ∀k. For example, in sinusoid coding, this can

be achieved by assigning a different modulation frequency

to each camera [20]. 3 As a result, the total measurement

waveform
{
Ck

mult

}
, k ∈ {1, . . . ,K} has the same phase

as the sinusoid due to the primary source. This is because

the interfering components are constant waveforms, and

thus do not alter the phase, thereby preventing systematic

depth errors. This is shown in Figure 2 (c).

We call this AC-Orthogonal (ACO) approach, since it re-

duces the interference to constant waveforms by removing

the AC component. However, the offset (DC-component) of

the total waveform still increases, as shown in Figure 2 (c).

The extra offset acts as additional ambient light, and thus

lowers the SNR of the estimated depths due to increased

shot noise [23]. 4 For example, the depth standard deviation

for a 4-tap sinusoid-based ACO method is given as:

σACO =
c

2
√
2πf0

√
T

√
es + ea +Nei

es
, (4)

where f0 is the modulation frequency, T is the total cap-

3Sinusoids of different frequencies are orthogonal functions, i.e., their

correlation is zero, or a constant if the sinusoids have a non-zero DC offset.
4With bipolar demodulation functions, although the DC-offset is re-

moved, the shot noise still increases. See technical report for a discussion.
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ture time for each measurement, and c is the light speed.

es = sαPs, ei = sαiPs and ea = sPa are the average

number of signal photons (due to the primary camera’s own

source), interfering photons (due to an interfering source),

ambient photons (due to ambient source), respectively, in-

cident on the pixel per unit time. Without loss of generality,

we assume that ei is the same for all interfering cameras.

See technical report for derivation of Eq. 4.

Although an ACO approach prevents systematic errors

due to MCI, random errors due to photon noise increase as

the number of interfering cameras increases (Eq. 4). This is

because each interfering source has a non-zero DC compo-

nent, contributing additional photon noise to the intensity

measurements. Is it possible to design a DC-Orthogonal

(DCO) approach, that removes both the AC and DC com-

ponents of the interference, as shown in Figure 2 (d)?

4. Stochastic Exposure Coding

In this section, we describe the proposed stochastic ex-

posure coding (SEC) technique. SEC is a DC-orthogonal

approach since it can mitigate both DC and AC interfer-

ence. SEC is based on the principle of time-division mul-

tiple access (TDMA) used in communication networks to

facilitate simultaneous multi-user access to a shared chan-

nel. Consider a scenario where multiple ToF cameras are si-

multaneously imaging the same scene. One way to prevent

interference is to divide the capture time into multiple slots,

and ensure that exactly one camera (and its source) is on

during any given slot. However, assigning cameras to slots

deterministically requires temporal synchronization, which

may be challenging, perhaps even infeasible, especially in

uncontrolled consumer applications.

The key idea behind the SEC is that by performing

the slot assignment stochastically, interference can be pre-

vented without synchronization. SEC can be considered a

stochastic version of the TDMA described above, where in

each slot, every camera is turned on with a probability p.

The on-off decision is made independently for each slot,

for every camera, without synchronization. If a slot doesn’t

produce a clash, both DC and AC interference are avoided

since the camera receives light only from its own source, as

shown in Figure 3. Since the approach is stochastic, a slot

may have clashes, which can be identified and discarded

with a simple clash-check algorithm (Section 4.2).

4.1. Optimal Slot ON Probability

The performance of the SEC is determined by the slot

ON probability p (we will use p instead of pON for brevity).

If p is high, each camera utilizes a larger fraction of the cap-

ture time, but may lead to more clashes. On the other hand,

for a low p, clashes may be minimized, but the cameras

incur a longer ‘dead time’ during which they are neither

emitting light, nor capturing measurements. Thus, a natural

⋯
⋯ON with 𝑝

Slot 1 Frame

OFF with 1 − 𝑝
Slot 𝑀

ToF

camera1

ToF

camera2

Figure 3. Concept of SEC. A frame, the most basic unit to esti-

mate the depth, is divided into M number of slots. Each slot is

activated with a probability p. A depth value is estimated from

non-clashed ON (activated) slots.

question is: What is the optimal p? To address this, we ex-

press the depth standard deviation of the SEC in terms of p.

Depth standard deviation of SEC: Consider a scene being

imaged by N + 1 C-ToF cameras. For ease of analysis, we

assume the cameras are identical. The capture time of each

camera is divided into slots of the same duration. For each

camera, it is turned on with a probability p in every slot.

In general, the boundaries of the slots may not be aligned

across cameras. Therefore, any given slot of a camera will

overlap with two slots of another camera. Thus, the proba-

bility pnoclsh that a given slot does not produce a clash, i.e.,

only one camera is active during that slot, is:

pnoclsh = p (1− p)
2N

. (5)

Assuming we can identify all the non-clash slots, the ef-

fective exposure time for each camera, on an average, is

T pnoclsh, where T is the total capture time. In order to

compensate for the reduced exposure time, we assume that

the peak power of the source can be amplified. Let A be the

source peak power amplification. Theoretically, A should

be 1/p, so the total energy used during the capture time re-

mains constant. Practically, however, A is limited by device

constraints. Thus, A = min (1/p,A0), where A0 is the up-

per bound of A determined by physical constraints.

Given the effective exposure time T pnoclsh and source

power amplificationA, the depth standard deviation of SEC

can be derived from Eq. 4:

σSEC =
c

2
√
2πf0

√
Tpnoclsh

√
Aes + ea
Aes

, (6)

where A = min (1/p,A0) and pnoclsh = p (1− p)
2N

.5

The optimal ON probability for SEC pSEC is defined as:

pSEC = argmin
p
σSEC = min

(
1

2N + 1
,
1

A0

)

. (7)

See technical report for a derivation. As the number of in-

terfering cameras N increases, the optimal ON probability

5Strictly speaking, randomness due to slot ON probability can influ-

ence the depth standard deviations. However, in practice, the effect of

randomness is relatively small if sufficient number of slots are used.
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decreases so that the number of clashes remains low. If p
is too small or large, the optimal SNR cannot be achieved

since the effective integration time is reduced.

4.2. Clash Check and Depth Estimation in SEC

Since SEC is a stochastic, asynchronized approach, a

fraction of the slots in each frame may still have clashes.

These clash slots need to be identified and discarded so

that they do not affect the depth computations. Our clash

check algorithm is based on the following, simple intuition:

In a clashed slot, the camera receives light from multiple

sources. Therefore, the total received intensity in that slot

is higher as compared to no-clash slots, with high probabil-

ity. Therefore, we compare the sum of all the correlation

values o =
∑

k Ck in each slot to a threshold. If o is larger,

the corresponding slot is discarded. Finally, we compute a

depth value dm (m ∈ {1, ...,Mnoclsh} for each non-clash

slot, and the final depth value d for each frame is estimated

by averaging dm. See the technical report for details.

4.3. Practical Considerations and Limitations

Being a DC-orthogonal approach, SEC achieves higher

SNR than ACO (see Section 6 for details). On the other

hand, SEC has stronger requirements: (a) it requires higher

source peak power (for the same total energy) as compared

to ACO, and (b) it needs to capture more data (multiple slots

per frame). Fortunately, as we show below, there are rela-

tively small upper bounds on these requirements.

Required source peak power amplification: Since the ef-

fective integration time of SEC is shorter than ACO, the

SNR of SEC can be smaller than ACO if the source peak

power amplificationA is not sufficiently large. The required

A for SEC to perform better than ACO in terms of SNR can

be estimated from σSEC ≤ σACO:

1√
pnoclsh

√
A+ ra
A

≤
√

1 + ra +Nri, (8)

where ra = ea/es and ri = ei/es are relative ambient

light strength and relative interfering light source strength,

respectively. Figure 4 shows the required peak power ampli-

fication A over different number of interfering cameras N
at different ambient light strengths. Although the required

A increases with N , it eventually converges, as stated in the

following result (see technical report for a proof):

Result 1. If the source peak power amplification of SEC is

larger than
(

e+
√

e (e+ 2rari)
)

/ri, the depth standard

deviation of SEC is always lower than ACO regardless of

the number of interfering cameras. For example, the re-

quired A ≈ 6.3 when ra = ri = 1.

Practicality of achieving high peak power: Two factors

should be considered regarding the practicality of increas-

ing source peak power. First, in power-constrained devices

𝑁 𝑁𝑁
𝐴

𝑟𝑎 = 0.1 𝑟𝑎 = 10𝑟𝑎 = 1

Figure 4. Required source peak power amplification for SEC.

The required source peak power A increases with the number of

interfering cameras N , but eventually converges, for various rela-

tive ambient light strengths ra.

𝑁 𝑁𝑁

𝑀 𝑂𝑁 𝐴0 = 7 𝐴0 = 11𝐴0 = 9

𝑝𝑠𝑢𝑐 = 0.99 𝑝𝑠𝑢𝑐 = 0.95 𝑝𝑠𝑢𝑐 = 0.90
Figure 5. Required number of ON slots for SEC. More number

of ON slots MON is required if the number interfering cameras

N increases over various allowable peak power amplification A0.

However, the required MON eventually converges.

(e.g., cell-phones), in order to minimize total energy con-

sumption, it may be desirable to operate the light source

with low average power despite availability of higher peak

power. Second, recent studies have shown the possibility of

driving low-cost sources typically used in C-ToF cameras

(e.g., laser diodes and LEDs) with high instantaneous peak

power [22]. For example, a laser diode emitting at NIR

(830 nm) with 1.5W optical output power was successfully

overdriven up to about 25W [22].

Required number of slots: For correct depth estimation in

SEC, we need at least one non-clashed ON slot. Let psuc be

the probability of getting at least one non-clashed ON slots

during a frame. Then, the number of ON slots MON that a

camera would need to capture per frame increases with N ,

but, is eventually bounded, as stated in the following result:

Result 2. The required number of ON slotsMON converges

to e
(

z2/2 + 1− z
√

z2/4 + 1
)

regardless of the number

of interfering cameras, where z is the z-score value, and

is a function of psuc. For example, when psuc = 0.9, the

required MON is upper bounded by 9.1.

See supplementary report for a proof. Figure 5 shows

MON over the number of interfering cameras N with vari-

ous desired success probability psuc and different allowable

source peak power amplification A0. MON increases with

N , but converges as N increases. The total number of slots

in a frame M = MON/pSEC can be large and affect the

frame rate. However, the more pertinent factor that limits

the frame rate is MON (the number of on slots), which is

relatively small, thus making it possible to achieve suffi-

ciently high frame rate for capturing dynamic scenes. See

technical report for a detailed discussion and analysis.
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5. Multi-Layer Coding for Mitigating MCI

The proposed SEC creates a layered view of C-ToF cam-

era coding, as shown in Figure 1. Most existing approaches

for MCI reduction operate in the bottom depth coding layer

since they change the camera’s coding functions at nanosec-

ond time scales. In contrast, SEC operates at a higher ex-

posure coding layer by modulating the camera and source

at micro/millisecond time scales. Since SEC and conven-

tional ACO techniques operate in different layers, these are

orthogonal to each other, and, can be used in a complemen-

tary manner to combine the benefits of both. For example,

it is possible to use sinusoid coding with different modu-

lation frequencies for different cameras, while also using

SEC. In such a multi-layer integrated approach (CMB), it is

no longer necessary to discard the clashed slots since they

do not introduce depth errors. This makes repeated clash

check unnecessary, leading to simpler depth estimation and

an efficient frame structure.

Depth standard deviation of CMB: Depth standard devi-

ation of CMB σCMB can be easily derived from Eq. 4:

σCMB =
c

2
√
2πf0

√
Tp

√
Aes + ea +NpAei

Aes
, (9)

where A = min
(

1

p
, A0

)

.

Optimal slot ON probability: The optimal slot ON proba-

bility for CMB pCMB is defined as p minimizing Eq. 9:

pCMB = argmin
p
σCMB =

1

A0

. (10)

Note that pCMB is independent of N . For derivation and

depth estimation algorithm, see technical report.

6. Theoretical Performance Comparisons

We present theoretical comparisons between ACO, SEC

and CMB in terms of 1) depth standard deviation at the

same energy consumption and 2) required energy to achieve

the same depth standard deviation. All comparisons are rel-

ative to an ideal ACO. We define the normalized inverse

depth standard deviations σ−1 (higher value is better):

σ−1 =
σACO

σSEC

= (1− pSEC)
N

√

A0 (1 + ra +Nri)

A0 + ra
,

(11)

and

σ−1 =
σACO

σCMB

= A0

√

pCMB (1 + ra +Nri)

A0 + ra + pCMBNA0ri
, (12)

for SEC and CMB, respectively. For ACO, σ−1 = 1.

(a) Inverse depth standard deviation

(b) Energy consumption

𝑁 𝑟𝑎𝐴0

ത𝜎−1

ത𝐸
𝑁 𝑟𝑎𝐴0

ACO SEC (proposed) CMB (proposed)

Figure 6. Theoretical comparison. Different approaches are com-

pared by (a) inverse depth standard deviation at the same energy

consumption, and (b) required energy to achieve the same depth

standard deviation. The relative performance of our approaches

improves with the number of interfering cameras N , allowable

peak power amplification A0, and relative ambient light power ra.

The required energy consumption to achieve the same

depth standard deviation is also compared. We define E as:

ESEC =
ESEC

EACO

=
1

(1− pSEC)
2N

A0 + ra
A0 (1 + ra +Nri)

,

(13)

and

ECMB =
ECMB

EACO

=
A0 + ra + pCMBNA0ri
A0 (1 + ra +Nri)

, (14)

for SEC and CMB, respectively. E = 1 for ACO.

Figure 6 shows (a) σ−1 and (b) E of three approaches

as a function of the number of interfering cameras N , al-

lowable peak power amplification A0, and ambient light

strength ra. When one of these parameters varies, the other

parameters are fixed asN = 5,A0 = 8, ra = 1, and ri = 1.

As can be seen from the figure, σ−1 and E are closely re-

lated to each other. In general, σ−1 andE of SEC and CMB

improve when N increases due to DC interference reduc-

tion which cannot be achieved by ACO. Although the rel-

ative performance of SEC and CMB improves with A0, it

saturates for SEC. Lower energy consumption is one of the

key benefits of our approaches, which is critical in power-

constrained applications. For additional comparisons with

the same total peak power, see technical report.

7. Validation by Simulations

7.1. Verification of Depth Standard Deviation

We confirm the derived depth standard deviation equa-

tions of ACO, SEC, and CMB by simulations. For each

approach, correlation values are computed, Poisson noise
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Figure 7. Inverse depth standard deviations by simulations and

equations. Simulation results match well with the derived equa-

tions over various parameters. The proposed approaches outper-

form existing methods over a range of imaging scenarios.

is added, and the depth value is estimated from the noisy

correlation values. This procedure is repeated 1000 times

to compute the depth standard deviations. We also include

the PN-sequence approach (PN) [6, 7] for simulations. We

modified the original depth estimation algorithm [6] to ac-

commodate unipolar demodulation functions and four cor-

relation values for fair comparisons with other approaches.

Figure 7 shows the inverse depth standard deviations

σ−1 of PN, ACO, SEC, and CMB over the number of in-

terfering cameras N , total integration time T , and modula-

tion frequency f0 when the depth value is 1m. Solid and

dotted lines indicate the results by simulations and equa-

tions, respectively. All simulation results match well with

the derived depth standard deviation equations. The poor

performance of PN id due to non-zero AC interference and

relatively low modulation frequency to achieve the same

measurable depth range as other approaches. See technical

report for more details.

7.2. Simulations with a 3­D Model

Given a 3-D model, the depth values from a given cam-

era position to all vertices of the model are computed. For

each vertex, the correlation values are computed by 4 differ-

ent approaches (PN, ACO, SEC, and CMB), photon noise is

added, and the depth value is estimated from the corrupted

correlation values. Once the model is reconstructed, root-

mean-square error (RMSE) is computed for the objective

quality comparison as well. Figure 8 compares the simu-

lation results by different approaches over different num-

ber of interfering cameras N . RMSE values (in mm) are

shown below the results. Although absolute performance of

all approaches decreases with N , the relative performance

of SEC and CMB increases compared to PN or ACO in both

objective and subjective quality.

8. Hardware Prototype and Experiments

We developed a proof-of-concept hardware prototype to

implement ACO, SEC, and CMB. Our setup consists of

four C-ToF cameras (OPT8241-CDK-EVM, Texas Instru-

ments [2]) and four microcontrollers (Arduino UNO) to

generate random binary sequences (Figure 9). The square

waves at 50% duty cycle are used as the modulation and

40.14

7.95

4.99

4.37

61.31

12.36

7.08

4.99

80.15

16.25

8.49

5.90

𝑁 = 5 𝑁 = 10𝑁 = 1

P
N

A
C

O
S

E
C

 (
p

ro
p

o
se

d
)

C
M

B
 (

p
ro

p
o

se
d

)

Figure 8. 3-D model reconstruction over different number of

interfering cameras. Our approaches achieve better performance

in both subjective and objective quality over different number of

interfering cameras N . The RMSE values (in mm) are shown.

demodulation functions. Since a frame is the most basic

structure of the camera to access depth values, we used a

frame as a slot. For ACO and CMB, four different mod-

ulation frequencies B = {18, 20, 22, 24} (MHz) are used

for four different cameras. The depth values from all time

slots of a primary camera are averaged to obtain a depth

value for ACO. For SEC and CMB, the cameras operate in

the slave mode to be activated by external pulses generated

with an Arduino according to the given slot ON probability

by which the slot activation is determined. The depth values

from non-clashed ON slots and all ON slots are averaged to

obtain depth values for SEC and CMB, respectively. Since

it is challenging to amplify peak power of the light source

for SEC and CMB, we lower it for ACO instead using the

ND-filters (NE20A-B, Thorlabs) with an optical density fil-
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Front view Top view

Figure 9. Hardware prototype. Front and top views of our setup

to implement ACO, SEC, and CMB. The setup consists of four C-

ToF cameras and four microcontrollers to generate random binary

sequences to activate the cameras by given slot ON probabilities.

0.3m 3.5m
ACO

0.3m 3.5m0.3m 3.5m0.3m 3.5m

SEC (proposed) CMB (proposed)
0.3m 3.5m

Ground truth Interference

82%, 0.533 99%, 0.157 99%, 0.154

Color

Figure 10. Performance comparison via real experiments.

Multi-frequency coding is used in the three different approaches.

The % of inliers (non-black pixels) and RMSE values (in m) at the

inliers are represented for comparison between approaches.

ter, while keeping the total energy consumption the same.

Results with multi-frequency coding scheme: One of the

key benefits of our approach is its ability to be used with

any C-ToF coding scheme. To demonstrate this capabil-

ity, we used a multi-frequency coding scheme with two

frequencies [9]. We use the set of modulation frequen-

cies B = {18, 20, 22, 24} (MHz) as the base frequencies,

and {27, 30, 33, 36} (MHz) as the de-aliasing frequencies.

0.83ms is used for slot integration time. Figure 10 shows

the color image and ground truth depth map of a face man-

nequin along with interference result and estimated depth

maps by three approaches. Depths at the regions with low-

est 1% number of photons are not recovered, and shown

in black as outliers. For each approach, % of inliers and

RMSE values (in m) for inliers are represented on the re-

sults. Although systematic depth errors are removed by

all approaches, our approaches show significantly reduced

noise compared to ACO.

Energy consumption comparison: We obtain depth esti-

mation results with different energy consumption and com-

pare them between different approaches. Different energy

consumption is achieved by changing slot integration time:

low energy (0.83ms), medium energy (1.83ms), and high

0m 4m
Low energy

0m 4m 0m 4m 0m 4m

0m 4m 0m 4m 0m 4m
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Ground truth InterferenceColor

39%, 0.343 75%, 0.212 89%, 0.183

99%, 0.097 100%, 0.043 100%, 0.031

99%, 0.096 100%, 0.041 100%, 0.029

Figure 11. Depth estimation comparison over different energy

consumption. Our approaches show better performance at lower

energy consumption than the conventional approach. The % of

inliers (non-black pixels) and RMSE values (in m) at the inliers

are represented for comparison between approaches.

energy (2.83ms). Multi-frequency mode is deactivated and

the set of modulation frequencies B are used as the base

frequencies. Figure 11 shows the depth estimation results

by different approaches over different energy consumption

along with color image, ground truth depth map and inter-

ference result. Our approaches can obtain better results than

ACO with only 30% of the energy consumed for ACO.

9. Discussion and Future Outlook

We propose stochastic exposure coding, a novel ap-

proach for mitigating both both AC and DC components of

multi-camera interference in C-ToF imaging. This capabil-

ity enables high precision depth estimation with low energy

consumption. We demonstrat the performance benefits of

the proposed approaches with theoretical analysis, simula-

tions and real experiments. The proposed approach operates

in an independent layer in C-ToF coding such that it can be

incorporated with wide range of C-ToF coding functions,

and various hardware platforms.
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[6] Bernhard Büttgen, Felix Lustenberger, Peter Seitz, et al.

Pseudonoise optical modulation for real-time 3-d imaging

with minimum interference. IEEE Transactions on Circuits

and Systems I: Regular Papers, 54(10):2109–2119, 2007.
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Supplementary Technical Report:
Stochastic Exposure Coding for Handling Multi-ToF-Camera Interference
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1. Overview
This document provides derivations, explanations, and more results supporting the content of the paper submission titled,

“Stochastic Exposure Coding for Handling Multi-ToF-Camera Interference”.

2. Depth Standard Deviation with Sinusoid Coding Scheme
All approaches are compared in terms of depth standard deviations since only random errors are dominant source of

depth errors after systematic errors are removed. We will derive the base depth standard deviation when the sinusoid coding
scheme is used in a single C-ToF camera case as a first step. Next, the depth standard deviations for the AC-orthogonal
(ACO) approach and the proposed approaches will be derived from it. If the sinusoid coding scheme is used, and the depth
value is recovered by the 4-bucket method [4] (K = 4 intensity values are used in depth estimation: Eq. 6) in a single camera
case, the depth standard deviation is:

σ =
c

2
√
2πf0

√
T

√
es + ea
es

, (1)

where f0 is a modulation frequency, T is the total integration time, es, and ea are the average number of signal photons (due
to the primary camera’s own source), and ambient photons (due to ambient source), respectively, incident on the pixel per
unit time. The derivation of Eq. 1 is as follows.

For the sinusoid coding scheme, modulation function M(t) and demodulation function D(t) are defined as sinusoids:

M(t) = D(t) = 1 + cos(2πf0t), (2)

where f0 is a modulation frequency. The radiance of the reflected light incident on a sensor pixel p is:

R(p; t) = αPsM

(
t− 2d

c

)
= αPs

(
1 + cos

(
2πf0t−

4πf0d

c

))
, (3)

where d is the distance between the camera and the scene point imaged at p, c is the speed of light. Ps is average power of
the light source with an assumption of 1

T0

∫
T0
M(t) dt = 1. α is a scene-dependent scale factor that contains scene albedo,

reflectance properties and light fall-off. The correlation or intensity value C(p; d) measured at pixel p is:

C(p; d) = s

∫
T

(R(t; d) + Pa)D(t) dt = sT

(
αPs + Pa +

αPs
2

cos

(
4πf0d

c

))
, (4)

where s is a camera-dependent scale factor encapsulating sensor gain and sensitivity, T is the total integration time, and Pa
is average power of ambient light incident on the scene. We take K = 4 intensity measurements Ck(d), k ∈ {1, . . . , 4} by
phase-shifting the demodulation function D(t) by a different amount ψk = π

2 (k − 1) , k ∈ {1, . . . , 4}:

Ck(d) = T

(
es + ea +

es
2
cos

(
4πf0d

c
+
π

2
(k − 1)

))
, k ∈ {1, . . . , 4} , (5)



where es = sαPs, and ea = sPa are the average number of signal photons, and ambient photons, respectively, incident on the
pixel per unit time. We drop the argument p for brevity. The depth value d can be recovered using the 4-bucket method [4]:

d =
c

4πf0
tan−1

(
C4 − C2

C1 − C3

)
. (6)

Using the error propagation rule, the depth standard deviation σ can be obtained by:

σ =

√√√√ 4∑
k=1

(
∂d

∂Ck

)2

Var (Ck), (7)

where Var (·) is a variance operator. Since Var
(
Ck
)
= Ck in Poisson distribution,

σ =
c

2
√
2πf0

√
T

√
es + ea
es

. (8)

3. Depth Standard Deviation with Bipolar Demodulation
We assumed the demodulation function D(t) is unipolar (0 ≤ D(t) ≤ 2) in the previous derivation. The demodulation

functions can be also electronically implemented as bipolar (−1 ≤ D(t) ≤ 1). With zero-mean bipolar demodulation
functions (

∫
T0
D(t)dt = 0), Pa and the DC component of R(t) can be cancelled out during integration in correlation

computation (Eq. 4). However, shot noise by Pa and the DC component of R(t) contributes to random depth errors. If
we use a bipolar sinusoid demodulation function instead of a unipolar one, Eq 1 is replaced with:

σ =
c

2π
√
πf0
√
T

√
es + ea
es

. (9)

Compared to Eq. 1, Eq. 9 is scaled down by
√
2/π and everything else is the same. Please note that this is specific for the

sinusoid coding scheme. If other coding schemes are used, the equations can be different. The derivation of Eq. 9 is as
follows.

Let’s assume that D(t) is zero-mean bipolar sinusoid:

D(t) = cos(2πf0t). (10)

The correlation value C(p; d) measured at pixel p can be represented as:

C(p; d) = s

∫
T

(R(t; d) + Pa)D(t) dt = s

∫
T⊕

(R(t; d) + Pa)D(t) dt− s
∫
T	

(R(t; d) + Pa) (−D(t)) dt, (11)

where T⊕ and T	 mean the intervals of total integration time corresponding to the positive and the negative lobes of D(t).
When we take K = 4 intensity measurements Ck(d), k ∈ {1, . . . , 4}, we shift the phase of the modulation function M(t)
(instead of shifting the demodulation function D(t)) by ψk = π

2 (k − 1) , k ∈ {1, . . . , 4} for ease of computation:

Ck(d) = Ck⊕ − Ck	 = T

(
es + ea
π

+
es
4
cos

(
4πf0d

c
+ ψk

))
− T

(
es + ea
π

− es
4
cos

(
4πf0d

c
+ ψk

))
, (12)

where Ck⊕ and Ck	 are the correlation values for T⊕ and T	, respectively. The depth value d can be recovered by:

d =
c

4πf0
tan−1

(
C4⊕ − C4	 − C2⊕ + C2	

C1⊕ − C1	 − C3⊕ + C3	

)
. (13)

Using the error propagation rule, the depth standard deviation σ can be obtained by:

σ =

√√√√ 4∑
k=1

((
∂d

∂Ck⊕

)2

Var (Ck⊕) +

(
∂d

∂Ck	

)2

Var (Ck	)

)
. (14)

With Var (Ck⊕) = Ck⊕ and Var (Ck	) = Ck	,

σ =
c

2π
√
πf0
√
T

√
es + ea
es

. (15)



4. Depth Standard Deviation of AC-orthogonal (ACO) approach
For an ideal ACO approach, all AC components from interfering sources are removed and only DC components are

captured at the sensor of the primary camera. Sum of interfering DC components from all interfering sources acts as additional
ambient light, thus can be added to ea in Eq. 1 to derived the depth standard deviation for ACO:

σACO =
c

2
√
2πf0

√
T

√
es + ea +Nei

es︸ ︷︷ ︸
Eq. 4 of the main manuscript

, (16)

where N is the number of interfering cameras, and ei = sαiPs is the average number of interfering photons (due to an
interfering source) incident on the pixel per unit time. Without loss of generality, we assume that ei is the same for all
interfering cameras.

5. Depth Standard Deviation of Stochastic Exposure Coding (SEC) approach
For the proposed stochastic exposure coding (SEC) approach, the effective integration time is determined by the prob-

ability pnoclsh that a given slot does not produce a clash. Thus, total integration time is reduced by pnoclsh on average.
Furthermore, the source strength should be amplified by the source peak power amplification A. Interfering DC components
are removed since clashed slots are thrown away in SEC. The depth standard deviation of SEC can be derived by putting
together all of these:

σSEC =
c

2
√
2πf0

√
Tpnoclsh

√
Aes + ea
es︸ ︷︷ ︸

Eq. 6 of the main manuscript

, (17)

where A = min (1/p,A0), A0 is allowable source peak power amplification, and pnoclsh = p (1− p)2N .

6. Optimal Slot ON Probability of SEC
The performance of SEC is determined by the slot on probability p. If p is too high or low, the effective integration time

is reduced. The optimal slot ON probability of SEC pSEC is defined as p minimizing σSEC and can be represented as:

pSEC = min

(
1

2N + 1
,
1

A0

)
︸ ︷︷ ︸

Eq. 7 of the main manuscript

. (18)

The derivation of Eq. 18 is as follows. From the definition of pSEC ,

pSEC = argmin
p
σSEC = argmin

p

c

2
√
2πf0

√
Tp (1− p)2N

√
Aes + ea
es

, (19)

where A = min (1/p,A0). If 1/p ≤ A0, A = 1/p, and

pSEC = argmin
p

√
es
p + ea√

p (1− p)2N
=

1

A0
(20)

since σSEC is monotonically increasing over p ∈ [1/A0, 1]. Otherwise, A = A0, thus

pSEC = argmin
p

1√
p (1− p)2N

=
1

2N + 1
. (21)

From Eq. 20 and Eq. 21,

pSEC = min

(
1

2N + 1
,
1

A0

)
. (22)
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Figure 1. Optimal slot ON probability for SEC approach. (a) The optimal slot ON probability for SEC pSEC is determined only by the
number of interfering cameras N when source peak power amplification is not allowed. (b) With peak power amplification, however, both
allowable peak power amplification A0 and N determines pSEC . If A0 ≥ 2N + 1, pSEC is determined by A0, otherwise, by N .

Figure 1 (a) and (b) show the inverse depth standard deviations σSEC−1 over p with different number of interfering cam-
eras N without source peak power amplification (A0 = 1) and with source peak power amplification (A0 = 5), respectively.
Without source peak power amplification, the optimal slot ON probability pSEC minimizing σSEC (maximizing σSEC−1)
is determined by N . When p > pSEC , the slot clash increases, the effective integration time without clash decreases, and
σSEC increases. When p < pSEC , the slot is more rarely sent, the effective integration time decreases, and σSEC increases.
When the number of interfering cameraN increases, pSEC decreases, and σSEC at pSEC increases. With source peak power
amplification, pSEC has two different forms according to the relationship between N and A0 (Eq. 18). If A0 ≥ 2N + 1,
pSEC is determined by A0, otherwise by N . es = ea = 1 × 106, T = 10ms, and f0 = 30MHz were used to create the
plots.

7. Depth Estimation Algorithm for SEC
First, each ON slot is tested if it is clashed or not (please refer to the next section for the clash check algorithm). The

clashed ON slot is discarded since it does not contain correct depth information. Second, if the slot is free from clash, the slot
depth value dm is estimated from the slot correlation (or intensity) values Cm,k, m ∈ {1, . . . ,Mnoclsh}, k ∈ {1, . . . ,K},
whereMnoclsh is the number of non-clashed ON slots, andK is the total number of captured intensity (or correlation) values.
With an assumption of sinusoid coding scheme, and K = 4:

dm =
c

4πf0
tan−1

(
Cm,4 − Cm,2
Cm,1 − Cm,3

)
, m ∈ {1, . . . ,Mnoclsh}. (23)

Next, repeat this procedure for all non-clashed ON slots, and estimate the frame depth value d by averaging all dms:

d =
1

Mnoclsh

Mnoclsh∑
m=1

dm, m ∈ {1, ...,Mnoclsh} , (24)

The depth estimation algorithm for SEC is summarized in Algorithm 1.

8. Slot Clash Check Algorithm for SEC
Slot clash check is very important since correct depth values cannot be recovered from the clashed slots due to systematic

errors. Slot clash check is performed based on the summation of the slot correlation values. For the m-th ON slot (m ∈
{1, . . . ,MON}):

om = Cm,1 + Cm,2 + Cm,3 + Cm,4. (25)

om is proportional to the total number of electrons generated at the sensor by all incoming light. This value is high if clash
happens, and low otherwise. We devise a simple threshold-based approach for clash check. By the central limit theorem, if
the number of photons or electrons is large enough, om is a random variable following a normal distribution whose standard
deviation σom =

√
E [om], where E [om] is the mean value of om. The stochastic upper and lower bounds of the value om



Algorithm 1: Depth estimation for the stochastic exposure coding approach
Input: Set of the correlation values of all ON slots within a frame, {(Cm,1, Cm,2, Cm,3, Cm,4)} (m ∈ {1, ...,MON}),

where MON is the total number of ON slots within the frame.
Output: Depth value for the frame, d.
dsum = 0;
for Each m ∈ {1, ...,MON} do

clashFound = checkClash(Cm,1, Cm,2, Cm,3, Cm,4);
(Algorithm 2)
if clashFound == FALSE; then

dm = estimateDepth(Cm,1, Cm,2, Cm,3, Cm,4); (Eq. 23)
dsum = dsum + dm;

end
end
d = dsum/Mnoclsh;

Algorithm 2: Slot clash check
Input: Correlation values of the m-th ON time slot, (Cm,1, Cm,2, Cm,3, Cm,4).
Output: Boolean variable, clashFound indicating if the slot clash happens or not.
om = Cm,1 + Cm,2 + Cm,3 + Cm,4; (Eq. 25)
if om > oclsh; then

clashFound = TRUE;
else

clashFound = FALSE;
end

can be approximated by E [om]±kσom . We will use E [om]+kσom as the threshold value oclsh to determine if clash happens
or not. If we define omin as:

omin = min om, m ∈ {1, ...,MON} , (26)

we can approximate omin as E [om] − kσom and the closed form solution for oclsh can be derived in terms of omin. Please
note that this approximation holds only when MON is large enough. The clashed slots with very small interference can be
falsely classified as non-clashed slots. However, since the falsely classified time slot is usually due to very small interference,
the depth error is still acceptable. This simple threshold-based algorithm works fast due to its closed form:

oclsh = om + k
√
om, (27)

where

om = omin +
k2

2
+

√
k2omin +

k4

4
. (28)

The slot clash check algorithm works well with k = 2 and is summarized in Algorithm 2.

9. Convergence of Required Source Peak Power Amplification for SEC
The required source peak power amplification A for SEC to perform better than ACO in terms of SNR can be estimated

from σSEC ≤ σACO:

1
√
pnoclsh

√
A+ ra
A

≤
√

1 + ra +Nri, (29)

where ra = ea/es and ri = ei/es are relative ambient light strength and relative interfering light source strength, respectively.
The required A increases with N , but converges in the end as stated in the following result:



Result 1. If the source peak power amplification of SEC is larger than
(
e+

√
e (e+ 2rari)

)
/ri, the depth standard devi-

ation of SEC is always lower than ACO regardless of the number of interfering cameras. For example, the required A ≈ 6.3
when ra = ri = 1.

The proof is as follows. If N is large enough, pSEC = 1/ (2N + 1), thus the required A can be represented as:

A =
1 +

√
1 + 4pnoclshra (1 + ra +Nri)

2pnoclsh (1 + ra +Nri)
. (30)

The convergent value of A can be found from:

lim
N→∞

A = lim
N→∞

1 +
√

1 + 4pnoclshra (1 + ra +Nri)

2pnoclsh (1 + ra +Nri)
. (31)

Using

lim
N→∞

pnoclsh (1 + ra +Nri) = lim
N→∞

(1 + ra +Nri)

2N + 1

(
2N

2N + 1

)2N

= lim
N→∞

(
1+ra
N + ri

)
2 + 1

N

1(
1 + 1

2N

)2N
=
ri
2e
,

(32)

lim
N→∞

A =
e+

√
e (e+ 2rari)

ri
. (33)

Thus, if the source peak power is increased by more than this value, SEC always works better than ACO regardless of the
number of interfering cameras.

10. Required Number of Slots for SEC
For reliable depth estimation, the number of the non-clashed ON slots Mnoclsh should be non-zero. Correct depth es-

timation is impossible if there is no non-clashed ON slots in the extreme case. This requirement can be represented as
Mpnoclsh = Mnoclsh ≥ χ, where M is the total number of slots, and χ (χ ≥ 1) is the minimum number of non-clashed
ON slots for the desired performance. The closed form equation for M to satisfy Mpnoclsh ≥ χ with a certain success
probability psuc = p (Mnoclsh ≥ χ) can be derived.

If we define a Bernoulli random variable Xm ∼ B (1, pnoclsh) for the m-th time slot (m = {1, ...,M}), the number of
non-clashed ON slots Mnoclsh is a random variable represented by a summation of Xm:

Mnoclsh =

M∑
m=1

Xm. (34)

Mnoclsh follows a binomial distribution: Mnoclsh ∼ B (M,pnoclsh). For sufficiently large M , it is well known that the
binomial distribution is approximated well by the normal distribution:

B (M,pnoclsh) ≈ N (Mpnoclsh,Mpnoclsh (1− pnoclsh)) . (35)

Given χ (χ ≥ 1), the success probability psuc = p (Mnoclsh ≥ χ) can be approximated by the area under the normal distri-
bution curve from χ to∞. From the z-score of χ:

χ−Mpnoclsh√
Mpnoclsh (1− pnoclsh)

= z, (36)

the total number of time slots M can be derived as:

M =
z2pa + 2χpnoclsh +

√
z4p2a − 4p2noclshχ

2

2p2noclsh
, (37)

where pa = pnoclsh (1− pnoclsh). z is the function of the desired psuc and is easy to be found from the the standard normal
distribution table. Figure 2 shows the required number of slots M over the number of interfering cameras N at the different
allowable source peak power amplifications A0 and different probabilities of getting at least one non-clashed ON slots psuc.



𝑁 𝑁𝑁

𝑀
𝐴0 = 1 𝐴0 = 9𝐴0 = 5

𝑝𝑠𝑢𝑐 = 0.99 𝑝𝑠𝑢𝑐 = 0.95 𝑝𝑠𝑢𝑐 = 0.90

Figure 2. Required number of slots for SEC. The required number of slots M over the number of interfering cameras N are shown at the
different allowable source peak power amplifications A0 and different probabilities of getting at least one non-clashed ON slots psuc.

11. Convergence of Required Number of ON Slots for SEC
The number of ON slots MON =MpSEC for SEC increases with the number of interfering cameras N , but converges in

the end as stated in the following result:

Result 2. The required number of ON slots MON converges to e
(
z2/2 + 1− z

√
z2/4 + 1

)
regardless of the number of

interfering cameras, where z is the z-score value, and is a function of psuc. For example, when psuc = 0.9, the required
MON is upper bounded by 9.1.

This result can be proved as follows:

lim
N→∞

MON = lim
N→∞

MpSEC

= lim
N→∞

z2

2

(
pSEC
pnoclsh

)
− z2

2
pSEC + χ

(
pSEC
pnoclsh

)

+

√
z4

4

(
pSEC
pnoclsh

)2

− z4

2

(
p2SEC
pnoclsh

)
+
z4

4
p2SEC + χz2

(
pSEC
pnoclsh

)2

− χz2
(
p2SEC
pnoclsh

)
.

(38)

Using

lim
N→∞

pSEC
pnoclsh

= lim
N→∞

(
1 +

1

2N

)2N

= e, (39)

lim
N→∞

p2SEC
pnoclsh

= 0, (40)

and
lim
N→∞

pSEC = 0, (41)

lim
N→∞

MON = e

(
z2

2
+ χ− z

√
z2

4
+ χ

)
. (42)

Thus, the number of ON slots MON is upper bounded.

12. Frame Rate of SEC
The proposed SEC approach requires dividing a frame into a large number of slots. However, the more pertinent factor

that may limit the frame-rate is the number of ON slots, which is typically low. For example, let the total number of slots be
100, and the slot ON probability be 0.2. While the sensor is inactive during OFF slots, each ON slot must have an integration-
readout-reset cycle. The reset time, minimum exposure time, and readout time of an off-the-shelf device are 16 µs, 21.3 µs,
and 815 µs, respectively [1]. Let the exposure time of each ON slot be 1ms, and OFF slot time be the same as minimum
exposure time. Then, the frame time is 20×(16 µs + 1000 µs + 815 µs)+80×21.3 µs = 39ms, which results in 25 frames/s



if 4 measurements are obtained simultaneously using the 4-tap pixel architecture. Although lower than what is achievable
with current coding approaches, this may be sufficient for dynamic scenes. For CMB, clash check is not needed and more
efficient frame structure is possible.

13. Depth Standard Deviation of Multi-Layer Coding (CMB) approach
To derive the depth standard deviation of the Multi-Layer Coding (CMB) approach by generalizing Eq. 8, we need to

consider the following things: The total integration time is reduced by slot ON probability p. The primary and interfering
source strengths are amplified by the source peak power amplificationA. Average interfering DC component should be added
to the ambient strength. It is straightforward to derive the depth standard deviation of SEC by putting together all of these:

σCMB =
c

2
√
2πf0

√
Tp

√
Aes + ea +NpAei

Aes︸ ︷︷ ︸
Eq. 9 of the main manuscript

, (43)

where A = min (1/p,A0).

14. Optimal Slot ON Probability of CMB
The optimal slot ON probability of CMB is defined as:

pCMB = argmin
p
σCMB = argmin

p

c

2
√
2πf0

√
Tp

√
Aes + ea +NpAei

Aes
, (44)

where A = min (1/p,A0). If 1/p ≤ A0, A = 1/p, and

pCMB = argmin
p
σCMB =

1

A0
(45)

since σCMB is monotonically increasing over p ∈ [1/A0, 1]. Otherwise, A = A0, and

pCMB = argmin
p
σCMB =

1

A0
(46)

since σCMB is monotonically decreasing over p ∈ (0, 1/A0]. From Eq. 45 and Eq. 46,

pCMB =
1

A0
. (47)

Therefore, the optimal slot ON probability of CMB pCMB doesn’t depend on the number of interfering cameras N .

15. Depth Estimation for CMB
In CMB, slot clash check is not necessary, and the depth value can be estimated from Eq. 6 (if sinusoid coding scheme is

assumed) using the summed correlation values from all ON slots:

d =
c

4πf0
tan−1

(∑MON

m=1 Cm,4 −
∑MON

m=1 Cm,2∑MON

m=1 Cm,1 −
∑MON

m=1 Cm,3

)
, (48)

where m ∈ {1, . . . ,MON} is the ON slot index.

16. Comparisons with the Same Peak Power
If peak power amplification is 1, and the integration time is kept constant, the optimal ON probability become 1, i.e.,

pCMB = 1. In this case, CMB becomes the same as existing ACO approaches, with the same performance. The more
interesting comparison is when the integration time is allowed to be increased. In this case, we can use lower ON probabilities
to avoid clashes. Specifically, we set pCMB = pSEC = 1/ (2N + 1). To keep the total signal constant, we increase the total
integration time by 2N+1. Figure 3 shows the comparisons between approaches with and without peak power amplification.
The performance of the proposed approaches with A0 = 1 is lower than that with A0 = 8, especially for small Ns. However,
the performance gain increases with N due to reduced clash probabilities.
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Figure 4. Autocorrelation of an m-sequence waveform. The autocorrelaiton of an m-sequence waveform is a periodic triangular function.

17. Depth Estimation for PN Sequence (PN) Approach
We used a PN sequence approach (PN) [2, 3] for comparison with our approaches in simulations. We modified the

original depth estimation algorithm [2] to accommodate unipolar demodulation functions and four correlation values for fair
comparison with other approaches. For the PN approach, modulation function M(t) and demodulation function D(t) are
defined as:

M(t) =
2n

n+ 1
H(t), (49)

and
D(t) = 2H(t), (50)

respectively. H(t) is a unipolar m-sequence (maximum length sequence) (0 ≤ H(t) ≤ 1), 2n/(n + 1) is a scale factor to
make 1

T0

∫
T0
M(t)dt = 1, and n is the number of chips (or bits) during one period of m-sequence waveform. The correlation

or intensity value can be represented as:

C(τ) =
4esn

n+ 1

∫
T

H(t− τ)H(t)dt+ eaT
n+ 1

n
, (51)

where τ = 2d/c is the round-trip time of the light from the source to the sensor. The autocorrelation of m-sequence waveform
Q (τ) =

∫
T
H(t− τ)H(t)dt has a periodic triangular function (Figure 4). We take four correlation values as follows:

C1 = C(τ) = 2ans

(
T

Tc

n+ 1

4n
(−τ) + T

n+ 1

2n

)
+ naT

n+ 1

n
, (52)

C2 = C(τ − Tc) = 2ans

(
T

Tc

n+ 1

4n
(τ − Tc) + T

n+ 1

2n

)
+ naT

n+ 1

n
, (53)

C3 = C(τ − 2Tc) = 2ansT
n+ 1

4n
+ naT

n+ 1

n
, (54)

C4 = C(τ − 3Tc) = 2ansT
n+ 1

4n
+ naT

n+ 1

n
, (55)
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Figure 5. Examples of random binary sequences. Examples of random binary sequences at different slot ON probabilities are shown.

where a = 2n/ (n+ 1), and Tc = T/ (n). The depth value d can be recovered by:

d =
cTc (C2 − C4)

2 (C1 + C2 − C3 − C4)
. (56)

18. Random Binary Sequences for activation of C-ToF Cameras
Each slot is activated or deactivated by random binary sequence during the integration time in our approaches. The value

of the binary sequence for each slot is 1 with an optimal slot ON probability. Figure 5 shows examples of random binary
sequences at different slot ON probabilities p when the total number of slots is 200.
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