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Coding Scheme Optimization for Fast Fluorescence Lifetime Imaging

JONGHO LEE, JENU VARGHESE CHACKO, BING DAI, SYED AZER REZA, ABDUL KADER SAGAR,
KEVIN W. ELICEIRI, ANDREAS VELTEN, and MOHIT GUPTA, University of Wisconsin-Madison

Fig. 1. Fast frequency domain fluorescence lifetime imaging (FLIM). (a)-(b) Fluorescence excitations by different modulation functions (orange) lead

to different fluorescence emissions (green). The intensities obtained by correlating the emissions with demodulation functions (blue) determine the SNR.

We propose a theoretical framework for analysis and design of FD-FLIM coding schemes (modulation and demodulation functions), and use that to design

(b) novel coding schemes that achieve considerably higher SNR as compared to conventional methods. (c) We developed a prototype FD-FLIM system to

implement various coding schemes. (d) A fluorescent sample with two different fluorescence lifetimes for the foreground and the background is excited by

a low power light source. (e) With the conventional coding scheme and 0.8ms/pixel acquisition time, no clear boundary is observed between the foreground

and background. (f) A considerably longer (10ms/pixel) acquisition time is required to obtain a clear boundary. (g) With the proposed coding schemes,

0.8ms/pixel acquisition time is sufficient to detect a clear boundary.

Fluorescence lifetime imaging (FLIM) is used for measuring material prop-

erties in a wide range of applications, including biology, medical imaging,

chemistry, and material science. In frequency-domain FLIM (FD-FLIM),

the object of interest is illuminated with a temporally modulated light
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source. The fluorescence lifetime is measured by computing the correla-

tions of the emitted light with a demodulation function at the sensor. The

signal-to-noise ratio (SNR) and the acquisition time of a FD-FLIM system

is determined by the coding scheme (modulation and demodulation func-

tions). In this article, we develop theory and algorithms for designing high-

performance FD-FLIM coding schemes that can achieve high SNR and short

acquisition time, given a fixed source power budget. Based on a geomet-

ric analysis of the image formation and noise model, we propose a novel

surrogate objective for the performance of a given coding scheme. The sur-

rogate objective is extremely fast to compute, and can be used to efficiently

explore the entire space of coding schemes. Based on this objective, we de-

sign novel, high-performance coding schemes that achieve up to an order

of magnitude shorter acquisition time as compared to existing approaches.

We demonstrate the performance advantage of the proposed schemes in

a variety of imaging conditions, using a modular hardware prototype that

can implement various coding schemes.

CCS Concepts: • Computing methodologies → Computational pho-

tography;

Additional Key Words and Phrases: Fluorescence lifetime, coding optimiza-

tion, waveform optimization, time-of-flight
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1 INTRODUCTION

Fluorescence is the phenomena where a material absorbs light at

certain wavelengths, and then emits light at different, typically

longer wavelengths. The wavelengths at which light is absorbed

and emitted are characteristic of the physical and chemical prop-

erties of the material (Hollas 2004). Therefore, the excitation and

emission spectra are used as signatures for material recognition

in a variety of applications, such as wine classification (Airado-

Rodríguez et al. 2009), honey classification (Lenhardt et al. 2015),

and oil classification (Sikorska et al. 2005).

Spectrum based fluorescence imaging techniques rely on

steady-state measurements, i.e., the measurements are assumed to

be constant over time. However, fluorescence also manifests as a

transient (high-speed temporal) phenomena. When the molecule

of a fluorescent material absorbs a photon, it goes into an excited

state. The molecule returns to the ground state after a time de-

lay, when it emits a photon. The delay between absorption and

emission of photon is a random variable (due to the stochastic na-

ture of emission), with an exponential distribution (Becker 2014).

The mean delay, i.e., the average time the molecule spends in

the excited state prior to returning to the ground state, is called

fluorescence lifetime. The typical scale of the fluorescent life-

time is from several picoseconds (ps) to several nanoseconds (ns)

(Bastiaens and Squire 1999).

Due to the exponential distribution of time delay, if a fluorescent

material is illuminated with a short (e.g., few picoseconds dura-

tion) light pulse, the intensity of the emitted light decays exponen-

tially over time. The rate of the exponential decay and the fluores-

cence lifetime provide information about material properties (e.g.,

temperature, viscosity, pH (Shi et al. 2014), chemical concentra-

tion (Sun et al. 2015)) that is often not available in the steady-state

fluorescence spectral measurements (Berezin and Achilefu 2010).

As a result, fluorescence lifetime imaging (FLIM) has found appli-

cations in several domains, including biology, medicine, chemistry,

material science, agriculture, and art, where it has been used to

distinguish between cancerous and noncancerous tissue (Colasanti

et al. 2000; Pradhan et al. 1995), perform fingerprint detection (Seah

et al. 2005, 2006), non-destructive fruit quality detection (Kim et al.

2008), non-invasive artwork analysis (Comelli et al. 2004; Nevin

et al. 2007), and wood classification (Donaldson and Radotic 2013).

Broadly, FLIM techniques can be classified two ways: time do-

main (TD) FLIM, and frequency domain (FD) FLIM. In TD-FLIM,

the sample of interest is illuminated with a short light pulse. A

high-speed sensor (e.g., a single photon avalanche diode (Pancheri

et al. 2013)) records the time profile of the emitted light, from

which lifetime is extracted by performing an exponential function

fit. Although TD-FLIM achieves high precision, it requires expen-

sive components (short-pulse laser, high-speed sensor) (Elson et al.

2004). Furthermore, since the sensor requires capturing the entire

time profile of the emitted light, in most cases (e.g., TD-FLIM by

time-correlated single photon counting), the sample needs to be

scanned one pixel at a time due to bandwidth constraints, making

it prohibitively slow, especially for in vivo diagnostic applications

where the motion artifacts need to be minimized (Requejo-Isidro

et al. 2004).

Our focus is on frequency domain FLIM (FD-FLIM), where the

sample is illuminated continuously (instead of with short pulses),

with a light source whose brightness is modulated over time. The

sensor captures intensity measurements by correlating the emit-

ted light with a demodulation function, over relatively long inte-

gration times (e.g., few milliseconds). FD-FLIM requires capturing

a small number (as few as three) of correlation intensity measure-

ments in order to recover the lifetime (Elder et al. 2008), with rel-

atively low cost components. The signal-to-noise ratio (SNR), and

hence, the acquisition time, of a FD-FLIM system is determined by

the coding scheme (modulation and demodulation functions) used.

Most existing FD-FLIM systems use sinusoid (Philip and Carlsson

2003) or square waves (Booth and Wilson 2004; Schlachter et al.

2009). For example, an often used FD-FLIM coding scheme is sinu-

soid coding, where both modulation and demodulation functions

are sinusoids of the same frequency (Philip and Carlsson 2003).

Unfortunately, the SNR achieved by sinusoid coding remains low,

thus often requiring long acquisition times to achieve the desired

precision.

We propose a geometric framework for design and analysis of

novel, high-performance FD-FLIM coding schemes. We define the

mean lifetime error, a measure of coding scheme performance,

based on a geometric analysis of the FD-FLIM image formation

model. The mean lifetime error is conceptually easy to under-

stand, and can be used to predict the performance of a given cod-

ing scheme over a specified range of lifetimes. However, mean

lifetime error requires expensive numerical computations. There-

fore, a coding scheme optimization procedure that directly uses the

mean lifetime error as an objective function, remains prohibitively

expensive from a computational standpoint.

Contributions and Implications. Our main theoretical contri-

bution is the derivation of a computationally lightweight surrogate

for the mean lifetime error based on the first-order partial deriv-

ative of the FD-FLIM image formation equation. The surrogate is

considerably faster to compute than the mean lifetime error, and

thus, enables us to efficiently explore the large space of FD-FLIM

coding functions to find the optimal solution. Based on this surro-

gate objective, we design FD-FLIM coding schemes that achieve up

to an order of magnitude higher acquisition speed (given a fixed

source power budget), as compared to conventional schemes. An

example is shown in Figure 1. FD-FLIM can be considered a spe-

cial case (with an exponential impulse scene response) of tran-

sient imaging. Due to this relationship, the scope of transient and

time-of-flight (ToF) imaging principles developed in graphics and

computer vision could be expanded to a broader set of applica-

tions involving FLIM (e.g., medical and clinical). Furthermore, the

proposed FD-FLIM measurement optimization approaches can be

used in transient imaging scenarios where the scene’s impulse re-

sponse can be modeled as an exponential function (e.g., single scat-

tering (Wu et al. 2012)).
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Hardware Prototype. We develop a proof-of-concept hardware

prototype (Figure 1(c)) capable of implementing a wide range of

coding schemes, and demonstrate the performance benefit of the

proposed coding schemes, for several materials and a broad range

of SNR scenarios. Our current hardware prototype is slow in ac-

quisition because it is based on mechanical scanning. The pro-

posed coding schemes can potentially be implemented on full-

frame FLIM systems (Requejo-Isidro et al. 2004) for real-time FLIM

measurements (Bhandari et al. 2015a).

2 RELATED WORK

Performance Metric and Code Design for FLIM. There has

been surprisingly little work on optimization of coding functions

for FLIM. While a few specific functions (e.g., sinusoid, square

waves, impulse function) have been evaluated in terms of a fig-

ure of merit called F-value (Elder et al. 2008; Esposito et al. 2007;

Lin and Gmitro 2010; Philip and Carlsson 2003), there is no general

recipe for designing optimal FD-FLIM coding schemes. Our goal is

to develop universal, easy to compute, performance metrics for the

entire space of coding schemes, which can be used to design and

analyze novel, high-performance coding schemes that consider-

ably outperform existing approaches in a broad range of scenarios.

Fluorescence in Computer Vision and Graphics: Fluoresc-

ence-based phenomena have been used in computer vision and

graphics in various contexts. For example, the observation that flu-

orescent materials behave approximately like Lambertian surfaces

(emits light equally in all directions) was used to reconstruct 3D

shape (Sato et al. 2012; Treibitz et al. 2012). Hullin et al. (2008)

developed a technique to reconstruct 3D shape of transparent

objects by immersing them in fluorescent liquid. Fu et al. (2014)

proposed an inter-reflection removal method using reflective and

fluorescent components in two channels from the captured image

of a fluorescent object. Han et al. (2012) used fluorescence emission

for estimating camera spectral sensitivity. Approaches for jointly

capturing (Hullin et al. 2010), and using reflectance and fluores-

cent emission images, e.g., for improved classification of coral reef

images (Beijbom et al. 2016), have also been proposed. These ap-

proaches are based on steady-state fluorescence spectral measure-

ments. In contrast, this article focuses on the transient aspects of

fluorescence.

Relationship to Transient Imaging. The goal of transient imag-

ing is to recover the entire time profile of light transport. Wu

et al. (2012) decomposed light transport into individual compo-

nents (direct, indirect, scattering, inter-reflections) for scene anal-

ysis applications. Velten et al. (2012) recovered 3D shape around a

corner using transient imaging. Heide et al. (2013, 2014) obtained

transient images by a correlation-based ToF image sensor.

In general, the structure of transient waveforms depends on

scene complexity, and can have arbitrary shapes. Typically, hun-

dreds of measurements, per-pixel, are required to recover the tran-

sient waveforms. In contrast, the focus of this article is on FLIM,

where the incident waveform can be modeled by an exponentially

decaying function with a single parameter (Equation (1)). There-

fore, only a few measurements are sufficient to recover the flu-

orescence lifetime. The proposed approaches can be relevant in

transient imaging scenarios where the scene’s impulse response

can be modeled as a low-dimensional parametric function. For ex-

ample, subsurface scattering, among various light transport com-

ponents, can be modeled with an exponentially decaying function

where the decay parameter is related with concentration of scat-

tering media (Wu et al. 2012).

Fluorescence Lifetime Estimation with ToF sensors. Re-

cently, approaches based on ToF sensors have been proposed for

low-cost fluorescence lifetime estimation. Esposito et al. showed

that CCD/CMOS sensors, originally developed for depth sensing,

can be used for lifetime estimation (Esposito et al. 2006, 2005).

Bhandari et al. also showed that lifetime can be estimated with

ToF sensors using codes unifying time domain and and frequency

domain approaches (Bhandari et al. 2015b; Bhandari and Raskar

2016). Our goal is different. Instead of analyzing specific hardware

implementations and sensors, we develop a general coding theory

for FD-FLIM. We envision that the proposed coding schemes and

optimization approaches, along with modern transient and ToF

sensors, will enable faster and low-cost hardware implementation

of FD-FLIM in the future.

3 IMAGE FORMATION MODEL

3.1 Fluorescence Transient Response

The fluorescence transient response h(t ;τ ) of a material is defined

as the exponentially decaying temporal intensity profile of the

emitted light, after the material is illuminated with a light impulse

δ (t ). h(t ;τ ) is given as

h(t ;τ ) =
1

τ
e−

t
τ (t ≥ 0), (1)

where τ is the material’s fluorescence lifetime; it determines

the rate of exponential decay.1 h(t ;τ ) is normalized so that∫ ∞
0

h(t ;τ ) = 1.

3.2 FD-FLIM Imaging Model

A FD-FLIM imaging system consists of a light source (e.g., a laser

diode) used to illuminate the sample of interest, and a sensor used

to capture the fluorescence emission, as shown in Figure 2. Let the

intensity of the source be temporally modulated according to a pe-

riodic function M (t ) (M (t ) ≥ 0), also called the modulation or the

excitation function. Due to absorption of incident light and fluo-

rescence, the sample emits light, which is captured by the sensor.

Then, the fluorescence emission E (t ),2 as observed at the sensor,

is given as a scaled and offset version of the convolution of M (t )

1We assume mono-exponential decay, where the fluorescence emission intensity
follows a single exponential function. Certain fluorescent materials have multi-
exponential decay, where the fluorescence emission profile is a linear combination
of multiple exponential functions (Lakowicz 2006). While designing coding schemes
for multi-exponential decay is outside the scope of this article, the approaches pre-
sented in this article can potentially be extended for multi-exponential lifetime decay
estimation. This forms a promising future research direction.
2The wavelengths of the emitted light E (t ) and incident signal M (t ) are different
due to fluorescence spectral shift (also called Stokes shift). In this article, for ease
of notation, we ignore the wavelength dependence, and consider only the temporal
variation of the incident and emitted signals. In practice, a dichroic mirror can be used
to reflect the incident light to the sample and to transmit the fluorescence emission
to the sensor, based on the wavelength, as shown in Figure 2.
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Fig. 2. Image formation model of FD-FLIM. A light source with tem-

porally modulated intensity according to function M (t ) excites a flu-

orescent sample. The resulting fluorescence emission E (t ) captured by

a sensor is correlated with the demodulation function D (t ) to get the

image intensity B . The lifetime τ is measured from an intensity vector

B = [B1, B2, . . . , BK ] (K ≥ 3) where each measurement Bi is captured

using a different pair of modulation and demodulation functions.

and h(t ;τ ):

E (t ;τ ) = α (M ⊗ h) (t ;τ ) + γ = α

∫ ∞

−∞
M (s;τ )h(t − s;τ ) ds + γ ,

(2)

whereα is a scale factor depending on system parameters (e.g., sys-

tem instrumentation) and the sample (e.g., concentration, quantum

yield). γ is an offset corresponding to ambient illumination due to

external sources and ⊗ is a convolution operator. Equation (2) does

not account for the temporal shift in E (t ) caused by the travel time

along the excitation path (light source→ sample) and the emission

path (sample→ sensor). We assume this shift can be computed in-

dependently and compensated by a calibration process.

The sensor computes the correlation of the emitted light E (t ;τ )
with a demodulation functionD (t ) (0 ≤ D (t ) ≤ 1). We assume that

both modulation function M (t ) and demodulation function D (t )
are periodic functions with the same fundamental frequency f0,

i.e., the same period T0 = 1/f0 (homodyne detection). The ideal

(noise-free) measured intensity B is given as

B =

∫
T
E (t ;τ ) D (t ) dt , (3)

where T � T0 is the sensor integration time. Next, we de-

fine�(τ ) =
∫

T
(M ⊗ h) (t ;τ ) D (t ) dt as the fluorescence correlation

function. It is described completely by the modulation and de-

modulation functions M (t ) and D (t ), respectively, and is a func-

tion only of the fluorescence lifetime τ . Substituting Equation (1)

and Equation (2) into Equation (3), the measured image intensity

is given as

B (α ; β ;τ ) = α �(τ ) + β, (4)

where β = γ
∫

T
D (t ) dt is the component of the measured inten-

sity due to ambient light sources (other than the laser source).

Equation (4) is the image formation equation of FD-FLIM. It states

that the measured intensity is a function of three arguments: α ,

β , and τ . In general, all three are unknown. Therefore, K (K ≥
3) intensity measurements are needed to recover the unknowns,

where each measurement Bi (1 ≤ i ≤ K ) is taken by using a dif-

ferent pair of modulation and demodulation functions Mi (t ) and

Fig. 3. The space of captured intensities for FD-FLIM and C-ToF

imaging. (a) In FD-FLIM, the set of intensity points when the lifetime is

varied forms an open 1D curve, with a non-uniform inter-point distance.

(b) In C-ToF imaging, the set of intensity points when the scene depth is

varied form a closed loop with a uniform inter-point distance.

Di (t ), respectively. For example, one popular FD-FLIM measure-

ment method is sinusoid coding, where both modulation and de-

modulation functions are sinusoids of the same frequency (Philip

and Carlsson 2003). Different intensity measurements are taken by

phase-shifting the demodulation function, while the modulation

function remains the same.

Let the set of measured intensities be represented as a vector

B = [B1,B2, . . . ,BK ] in the K-dimensional intensity space. For a

given tuple of unknownsα , β , and τ , B is completely determined by

the coding scheme C, which is defined as the set of modulation and

demodulation functions C = {Mi (t ),Di (t )}, 1 ≤ i ≤ K . The anal-

ysis in the article is generally valid for the entire space of modula-

tion and demodulation functions that are physically realizable (i.e.,

bounded amplitudes of modulation and demodulation functions),

given a fixed light source power budget. Please refer to Section 6

for amplitude constraints for C. Further practical constraints can

be imposed on C due to the source peak power or system band-

width. Figure 3(a) shows the set of intensity vectors B when K = 3

and sinusoid is used for both modulation and demodulation func-

tions. The locus of B is obtained by changing τ while fixingα and β .

Relationship to Phasor Plot Representation: The semi-circle

shape in Figure 3(a) looks similar to the phasor plot often used

to illustrate fluorescence emission with sinusoid illumination

(Digman et al. 2008). However, while a phasor plot is the represen-

tation of amplitude attenuation and phase shift of sinusoid fluores-

cence emission, Figure 3(a) is the set of raw intensity values after

integration of fluorescence emission with demodulation functions.

In general, for a non-sinusoid coding scheme, the shape of the set

of B is not a semi-circle.

Nomenclature. In the rest of the article, we will use the names

of modulation and demodulation functions to denote a coding

scheme. For example, “Sinusoid-Square” denotes a coding scheme

that uses sinusoid modulation functions, and square demodulation

functions.

3.3 FD-FLIM vs. C-ToF Imaging

Conceptually, the image formation model of FD-FLIM shares

many aspects with that of continuous wave ToF (C-ToF) imaging

(Bhandari et al. 2015a). Both imaging modalities require temporal

coding of light intensities, and sinusoid coding is a well-established
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Table 1. Comparisons between FD-FLIM and C-ToF Imaging

C-ToF imaging FD-FLIM

Functional form of light incident on the sensor Same as the light emitted by the source Different functional form
Space of intensity points when the lifetime or scene depth is varied Closed loop with wrapping Open curve

Optimal modulation frequency High frequencies Function of the lifetime

coding scheme in both modalities. However, beyond these high-

level similarities, these two modalities have important differences,

with different goals. The main difference in the image formation

model is the impulse responseh (t ) of the scene. As stated in Equa-

tion (1), the impulse response for FD-FLIM is an exponentially de-

caying function. In contrast, the impulse response for C-ToF is a

shifted delta functionh(t ) = δ (t − 2 d
c ), whered is the scene depth,

and c is the speed of light. This key difference in h(t ) leads to

several distinctions between FD-FLIM and C-ToF imaging, as dis-

cussed below. The main differences are also summarized in Table 1.

Functional Form of Reflected vs. Emitted Light. In C-ToF

imaging, the light emitted from the source is time-shifted dur-

ing travel from source to the scene and back, and thus, retains

its functional form (e.g., a square wave remains a square wave).

In contrast, in FD-FLIM, due to the exponential response function,

the functional form of the fluorescence emission can be different

from that of the incident light. As a result, the fluorescence life-

time information is encoded in not just the shift, but other prop-

erties of the waveform received at the sensor. For example, with

sinusoid modulation functions, fluorescence lifetime information

is encoded in both the amplitude and the phase shift of the emis-

sion signal. In contrast, in C-ToF, depth information is encoded in

only the phase shift of the reflected signal. Please see the supple-

mentary technical report for a detailed explanation.

The Space of Intensity Points When Lifetime or Scene Depth

is Varied. Consider the locus of intensity points B for FD-FLIM,

as τ is varied. The set of points form a 1D curve. Similarly, the set

of intensities captured by a C-ToF imaging system, as scene depth

is varied, also form a 1D curve in the intensity space (Gupta et al.

2018). For example, Figure 3(a) and (b) show example sets of inten-

sity points B for FD-FLIM and C-ToF imaging (for K = 3 sinusoid-

sinusoid coding), as τ and d are varied, respectively. The key dif-

ference is that in FD-FLIM, the locus of B forms an open curve,

but forms a closed loop in C-ToF imaging, which wraps around it-

self as d is increased further. Therefore, while C-ToF based depth

measurements are limited to a specific unambiguous depth range

due to phase wrapping (Hansard et al. 2012), an FD-FLIM system,

in principle, can recover the entire range of lifetimes (τ ∈ [0,∞)),
without ambiguities, with as few as three measurements.

The Optimal Modulation Frequency. For C-ToF imaging, the

distance between intensity points on the curve remains the same if

d increases by a constant amount, as shown in Figure 3(b). Also, the

spacing between points increases uniformly over the entire curve,

as the frequency of the modulation functions increases (Gupta

et al. 2018; Lange 2000). On the other hand, in FD-FLIM, the dis-

tance between intensity points is non-uniform (exponentially de-

creasing as τ increases), as shown in Figure 3(a). Furthermore, as

Fig. 4. Coding space theory of FD-FLIM. The 3D unknown space is

the set of all possible unknown vectors {U = [α, β, τ ]}, and the K -D in-

tensity space (K ≥ 3) is the set of corresponding intensity vectors {B =
[B1, B2, . . . , BK ]}. A coding scheme maps U to B, and the noise Λ in B

causes the lifetime error Δτ = |τ̂ − τ |.

the modulation frequencies increase, the inter-point distance in-

creases for relatively short τ ’s, whereas it becomes shorter for rel-

atively long τ ’s. Therefore, the optimal frequency (in terms of life-

time recovery precision) in FD-FLIM is actually a function of the

lifetime τ . In contrast, in C-ToF imaging, higher modulation fre-

quencies always result in higher depth precision, irrespective of

the scene depths. Please see the supplementary technical report

for details.

4 MEAN LIFETIME ERROR

In this section, we define a new measure to evaluate the perfor-

mance of a given FD-FLIM coding scheme, based on the mean

precision of the recovered lifetime. Consider the 3D space con-

sisting of all possible unknown vectors {U = [α , β,τ ]}, as shown

in Figure 4. A given coding scheme maps an unknown vector U

in the unknown space to a true (without noise) intensity vector

B = [B1,B2, . . . ,BK ](K ≥ 3) in a K-dimensional intensity space.

However, due to various sources of measurement noise (e.g., pho-

ton noise, sensor read noise, quantization noise), the sensor mea-

sures a noisy intensity vector B̂ = B + Λ in the intensity space,

where Λ is the noise vector. A decoding algorithm then maps B̂

to an estimated unknown vector Û, as shown in Figure 4. Consider

a plane Π in the unknown space, parallel to the α and β axes, and

passing through the estimated unknown vector Û. Note that all

the vectors on plane Π correspond to the same lifetime τ . There-

fore, the shortest (perpendicular) distance from the true unknown

point U to Π is the lifetime estimation error Δτ = |τ − τ̂ |, as shown

in Figure 4.

Since noise vector Λ, and hence, the measured intensity vec-

tor B̂ are random variables, the expected lifetime error for a given
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unknown U = [α , β,τ ] and coding scheme C is given as

E[Δτ ](C) =

∫
B̂

|τ − τ̂ | p (B̂|B(C)) dB̂, (5)

where p (B̂|B) is the probability density function of the measured

noisy intensity B̂, given the true intensity B, which is determined

by U and C. p (B̂|B) follows the K-dimensional normal distribu-

tion3 N (B, Σ), where Σ is a noise covariance matrix determined

by the noise model, including photon noise and read noise

(Hasinoff et al. 2010). For the sake of simplicity, we assume Σ is

diagonal. Equation (5) provides the expected lifetime error for

a specific lifetime, corresponding to the unknown point U. The

mean lifetime error for a given range of lifetimes [τ1,τ2] is given as

Emean[Δτ ](C; [τ1,τ2]) =
1

τ2 − τ1

∫ τ2

τ1

∫
B̂

|τ − τ̂ |p (B̂|B(C)) dB̂dτ .

(6)

Equation (5) is a special case of Equation (6) when τ1 = τ2 = τ . The

mean lifetime error is a measure of the performance of any given

coding scheme, in terms of the precision of the recovered lifetime.

The mean lifetime error is a universal objective: given any cod-

ing scheme, the mean lifetime error can be numerically computed

using the expression in Equation (6). Figure 6(a) shows the inverse

mean lifetime error Emean[Δτ ]−1 over the frequency f0 for sev-

eral coding schemes. Refer to Table 3 for the functional forms of

each coding scheme. Based on the mean lifetime error, we define

the optimal coding scheme Copt as the coding scheme that mini-

mizes the mean lifetime error, over a specified range of lifetimes

[τ1,τ2]:

Copt = arg min
C

Emean[Δτ ](C; [τ1,τ2]), (7)

where Emean[Δτ ](C; [τ1,τ2]) is the mean lifetime error achieved

by a coding scheme C over the lifetime range [τ1,τ2].

Computational Considerations for Mean Lifetime Error. The

mean lifetime error derived in Equation (6) is generally applica-

ble to the entire space of coding schemes, and thus can be used

as a valuable analysis tool for evaluating the performance of dif-

ferent schemes. However, unfortunately, mean lifetime error does

not have a closed-form analytical expression, and requires com-

putationally intensive numerical computations, which involve the

inverse problem of computing lifetime estimate τ̂ from the mea-

sured intensities.

In general, there is no closed-form solution for estimating τ̂ , ex-

cept for a few specific cases (e.g., Sinusoid - Sinusoid). Therefore,

for most coding schemes, this decoding step requires an expensive

iteration-based search procedure. Furthermore, the expression for

the mean lifetime error requires high-dimensional numerical inte-

gration over the intensity space. As a result, estimating mean life-

time error, while conceptually simple, is prohibitively expensive

from a computational standpoint for it to be used as an objective

function in an efficient FD-FLIM coding optimization method.

3We assume that photon noise follows normal distribution. For a relatively large num-
ber of photon counts, Poisson distribution approaches the normal distribution, due to
the central limit theorem.

5 FAST SURROGATE FOR MEAN LIFETIME ERROR

In this section, we derive a fast surrogate objective for the mean

lifetime error, based on a first-order differential analysis of the

FD-FLIM image formation model. The surrogate does not require

computationally intensive decoding and integration, and thus, is

significantly (three to four orders of magnitude) faster to compute

as compared to the mean lifetime error, while accurately predict-

ing the relative performance of different FD-FLIM coding schemes.

Due to these properties, it can be used to efficiently explore and

optimize over the space of coding schemes. In the following, we

derive the surrogate.

First-Order Approximation of FD-FLIM Model. The mean life-

time error derived in the previous section (Equation (6)) is based

on a relationship between intensity deviation (expressed as noise

vector Λ = B̂ − B), and the resulting lifetime error Δτ = |τ̂ − τ |. We

can approximate the relationship between the intensity deviation

and the lifetime error by taking the first-order partial derivative of

the measured intensity B with respect to τ from the image forma-

tion model (Equation (4)). Let Bτ = ∂B/∂τ be the partial derivative

of intensity vector B with respect to τ . The L2-norm of the vector

Bτ is given as ‖Bτ ‖ = ‖∂B‖/|∂τ |. Rearranging, we get a relation-

ship between differential lifetime error |∂τ | and the norm of the

differential intensity variation vector ∂B = [∂B1, . . . , ∂BK ]:

|∂τ | = ‖∂B‖‖Bτ ‖
. (8)

Consider an intensity variation (noise) vector Λ = [Λ1, . . . ,ΛK ],

where Λi is the standard deviation of noise in Bi (i = 1, . . . ,K ),
the ith intensity measurement. Λ = diaд(Σ), where Σ is the noise

covariance matrix that can be computed from the intensity mea-

surements B using the affine noise model. Λ can be considered a

representative (root-mean-square) intensity variation vector for the

measurements. Then, by using the first-order approximation in the

above equation, the first-order lifetime error Δτf due to intensity

variation vector Λ can be approximated as

Δτf =
‖Λ‖
‖Bτ ‖

. (9)

With a slight abuse of notation, we define the mean Δτf , over a

range of lifetimes [τ1,τ2] as

Δτf =
1

τ1 − τ2

∫ τ2

τ1

‖Λ‖
‖Bτ ‖

dτ . (10)

The first-order lifetime error Δτf can be computed from vectors

Λ and Bτ , both of which can be estimated with minimal compu-

tations directly from the image formation equation, without com-

putationally expensive inverse decoding or numerical integration

required to estimate the mean lifetime error.4 However, unfortu-

nately, Δτf does not accurately predict the coding scheme per-

formance. Figure 6(a) and (b) compare the mean lifetime error

Emean[Δτ ] and the first-order lifetime error Δτf , as a function of

modulation frequency, for several coding schemes. All the values

4
Bτ can be estimated analytically as Bτ = α�′ (τ ) from Equation (4), if �′ (τ ), the

gradient of the fluorescence correlation function, can be expressed in an analytical
form. In general, Bτ can be computed numerically by finite element approximation
as (B(τ + Δτ ) − B(τ ))/Δτ , with an infinitesimal Δτ . In our computations, we used
the numerical approach with Δτ = 0.001ns.
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Fig. 5. Surrogate derivation. The direction n along which the variation

in B leads to the maximum variation in decoded lifetime. The maximum

differential lifetime error can be approximated by the norm of the noise

variance along n divided by the norm of Bτmax , which is the projection of

Bτ = ∂B/∂τ onto n. The surrogate is the average of the maximum differ-

ential lifetime error over a range of lifetimes.

are computed at a given lifetime range. For ease of visualization,

the inverse values Emean[Δτ ]−1 and Δτ−1
f

are plotted. As can be

noticed, there is no strong correlation between the values of the two

objectives. Thus, while Δτf is fast to compute, it cannot be used as

a surrogate objective function for coding scheme optimization.

Geometrical Analysis of FD-FLIM Imaging Model. The main

reason behind weak correlation between Emean[Δτ ] and Δτf is

the following. The approximation in Equation (9) implicitly as-

sumes that the noise vector Λ and the intensity derivative vec-

tor Bτ point in the same direction. In general, this is not true.

Therefore, we need to find a representative direction in the inten-

sity space, variation along which can be accurately related to the

lifetime error.

Consider vectors Bα and Bβ , defined as the partial derivatives

of the intensity vector B with respect to the unknowns α and β ,

respectively:

Bα =
∂B

∂α
= �(τ ) (11)

and

Bβ =
∂B

∂β
= 1, (12)

where 1 is a vector whose elements are all 1’s. Let Π′ be the plane

defined by vectors Bα and Bβ in the intensity space. The key ob-

servation is that any intensity variation (due to noise) within Π′ re-

sults in zero lifetime error. This is because intensity changes along

Bα (or Bβ ) corresponds to change inα (or β) in the unknown space,

but τ remains constant. Let n be the unit vector perpendicular to

plane Π′, as shown in Figure 5:

n =
Bα × Bβ

‖Bα × Bβ ‖
, (13)

where × is the cross product. Since the variation in B along n leads

to the maximum variation in decoded lifetime τ̂ (thus, maximum

lifetime error), we compute the differential lifetime error |∂τ | from

‖∂B‖ along n. To this end, we define Bτmax as the projection of

Bτ = ∂B/∂τ onto n:

Bτmax = ‖Bτ ‖n cosθ , (14)

where θ is the angle between n and Bτ . Similarly, we define the

noise variance along n as

Λn = Λ ◦ n, (15)

where ◦ is the element-wise vector multiplication operator. Then,

substituting Bτmax and Λn for Bτ and Λ, respectively, in Equa-

tion (10), we get

ΔτS =
1

τ2 − τ1

∫ τ2

τ1

‖Λn‖
‖Bτmax ‖

dτ . (16)

This is an important equation; it provides the expression for the

proposed surrogate of mean lifetime error. Figure 6(c) shows the

inverse surrogate values Δτ−1
S

for the same coding schemes and

lifetime ranges as Figure 6(a). As can be noticed, there is a strong

correlation between the values of the mean lifetime error and sur-

rogate, for all the coding schemes, over the entire range of mod-

ulation frequencies. Figure 7 shows that the surrogate can predict

the coding scheme performance well even with much larger life-

time ranges. For two lifetime ranges, [τ1,τ2] = [0.5ns, 10ns] and

[τ1,τ2] = [5ns, 50ns], the surrogate shows high correlation with

mean lifetime error. Note that the surrogate approximates the

mean lifetime error only up to a scale factor. Although the sur-

rogate cannot be used to directly predict the mean lifetime error,

it can be used to compare relative performance of coding schemes

since the scale factor is the same for different coding schemes. Con-

sequently, we use this surrogate as an objective function to find

the optimal coding scheme, instead of the computationally inten-

sive mean lifetime error. For more comparison results between the

surrogate and the mean lifetime error with other lifetime ranges,

please see the supplementary technical report.

Runtime Comparison. The surrogate (Equation (16)) can be

computed via a small number of analytic lightweight computa-

tions. Specifically, n can be computed from Equations (11) and

(12). The noise vector Λ and gradient Bτ can be computed from

B, which in turn can be used to compute the projections Λn and

Bτmax, as given in Equations (14) and (15). There is no computa-

tionally expensive high-dimensional integration and lifetime de-

coding procedures, as required for the mean lifetime error compu-

tation. Table 2 shows the runtime comparison between the mean

lifetime error and the surrogate for the coding schemes used in

Figure 6 when the modulation frequency f0 = 1.6MHz. Computa-

tion of the surrogate is three orders of magnitude faster than the

mean lifetime error, while maintaining high correlation with the

mean lifetime error, as shown in Figure 6.

6 CODING SCHEME OPTIMIZATION

In this section, we demonstrate the capability of the surrogate for

FD-FLIM coding scheme optimization. The surrogate is general in

its scope, and could be used as an objective function in a broad

range of derivative-free optimization approaches, including based

on pattern search (Torczon 1997), genetic algorithms (Deb et al.

2002), and Nelder-Mead method (Nelder and Mead 1965). For ease

of implementation, we adopt a simple search-based optimization

approach as a proof-of-concept.

Search-Based Optimization. In principle, the space of coding

functions is infinite dimensional. To keep the optimization
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Fig. 6. Coding scheme performance comparison according to different objectives. (a) Inverse mean lifetime errors Emean [Δτ ]−1, (b) inverse values

of the first-order lifetime error Δτ −1
f

, and (c) inverse surrogate values Δτ −1
S

. The performance of several coding schemes is compared as a function of the

fundamental modulation frequency f0, for a given lifetime range [τ1, τ2] = [6ns, 8ns] and K = 3. The surrogate values have a strong correlation with the

mean lifetime errors across various coding schemes and frequencies, and thus, can be used as a lightweight alternative to the computationally intensive

mean lifetime error, in order to find the optimal coding scheme efficiently.

Fig. 7. Coding scheme performance comparison with relatively large lifetime ranges. Sinusoid-Sinusoid, Delta-Square, and Expo-Square are com-

pared in terms of (a) inverse mean lifetime errors Emean [Δτ ]−1, and (b) inverse surrogate values Δτ −1
S

when the lifetime range is [τ1, τ2] = [0.5ns, 10ns],

and also in terms of (c) inverse mean lifetime errors Emean [Δτ ]−1, and (d) inverse surrogate values Δτ −1
S

when the lifetime range is [τ1, τ2] = [5ns, 50ns].

The surrogate accurately predicts the coding scheme performance even for relatively large lifetime ranges.

Table 2. Runtime Comparison between the Mean Lifetime

Error and the Surrogate

Schemes Runtime (s)
Mean lifetime error Surrogate

Sinusoid-Sinusoid 3.58 × 101 2.60 × 10−2

Square-Square 0.52 × 101 0.87 × 10−2

Delta-Sinusoid 3.08 × 101 0.73 × 10−2

Delta-Square 2.58 × 101 0.54 × 10−2

Delta-Ham 1.31 × 101 1.21 × 10−2

Expo-Square 1.57 × 101 0.62 × 10−2

The surrogate is up to three orders of magnitude faster to compute as
compared to the mean lifetime error.

tractable, we narrow the space to a finite set of functions. We

consider coding schemes created using pairs of modulation and

demodulation functions derived from a fixed library of functions,

including sinusoid, square waves, impulse train, exponential

functions (Aljunid et al. 2013), and trapezoidal Hamiltonian

function (Gupta et al. 2018).

Table 3. Functions Used for Coding Schemes

in Optimization

Functions Equations

Sinusoid E0 (1 + cos(2π f0t ))
Square E0 (1 + sqr(2π f0t , χ ))
Delta E0

∑∞
n=−∞ δ (t − nT0)

Expo E0e
κt , κ > 0, 0 ≤ t ≤ T0

Ham Hamiltonian functions (Gupta et al. 2018)

The modulation frequency f0, duty cycle χ of the Square function, and
the exponent κ of the Expo function are the function parameters that
are optimized. The scale factor E0 is chosen appropriately to satisfy
the constraints (constant average source power, non-negativity) on the
modulation and the demodulation functions.

Table 3 provides a list of the functional forms and the corre-

sponding mathematical expressions. sqr is the square function

whose amplitude is between −1 and 1. χ is the duty cycle of

sqr function. The amplitudes E0 of all functions are scaled

appropriately such that the average source power is the same

for all the modulation functions, and the amplitudes of the

demodulation functions are between 0 and 1. Please refer to
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the supplementary technical report for details. Specifically, we

consider 12 pairs of modulation and demodulation functions: For

modulation functions M (t ), we use sinusoidal, square, delta, and

exponentially rising functions. For demodulation functions D (t ),
we use sinusoidal, square, and trapezoidal Hamiltonian functions.

We use the notation Sinusoid, Square, Delta, Expo, and Ham for

sinusoidal, square, delta, exponentially rising, and Hamiltonian

functions, respectively.

Importance of Optimizing Functional Parameters. Each func-

tional form (e.g., sinusoid, square, exponential) is described by a

set of parameters, such as modulation frequency f0 (period T0),

duty cycle χ for the square waves, and exponent κ for the expo-

nential function. The performance (mean lifetime error) of a cod-

ing scheme has a strong dependence on the functional parameters.

For example, Figure 6(a) shows the mean lifetime error of different

schemes varies significantly as the modulation frequency is varied.

Furthermore, the optimal modulation frequency (location of the

peak of the curves) is different for different coding schemes, and it

also depends on the range of lifetimes ([τ1,τ2]) used to compute the

errors. Therefore, given an application with a given range of life-

times to be measured, in order to determine the optimal scheme, it

is critical to compute the optimal functional parameters.

Despite limiting the coding schemes to a finite set of functional

forms, due to the parameter optimization, the search space is high-

dimensional. As a result, developing an efficient optimization pro-

cedure that can estimate globally optimal solution remains chal-

lenging. One solution is to perform an exhaustive search in the

parameter space. Such an exhaustive search, while conceptually

simple, is prohibitively expensive from a computational standpoint

if the mean lifetime error is used as the objective function. How-

ever, since the proposed surrogate is computationally lightweight,

we show that it is possible to perform an exhaustive search-based

optimization using the surrogate as an objective function, and de-

termine the globally optimal solution. It may be possible to use the

surrogate to design more efficient optimization procedures. Devel-

oping such optimization algorithms based on the proposed surro-

gate may enable optimization over a larger search space (e.g., more

functional forms), and is a promising future research direction.

Our search-based algorithm has two steps. First, the optimal pa-

rameter set Popt for each coding scheme is obtained by minimiz-

ing the surrogate:

Popt = arg min
P

ΔτS (P). (17)

For example, the optimal parameters for the Expo-Square coding

scheme are determined by performing a search over the 3D param-

eter spaceP = { f0,κ, χ }; the three parameters are the fundamental

modulation frequency f0, the exponent κ of the exponential func-

tion, and duty cycle χ of the square wave. Figure 8(a) shows Δτ−1
S

over the 2D parameter space of the Expo-Square coding scheme.

The lifetime range is [4ns, 6ns]. Although the search is performed

over a 3D space, we show the search results over a 2D space for

visualization. As seen from the figure, the surrogate varies signif-

icantly over the parameter space, and is a non-convex function

of the parameters. Since the surrogate is fast to compute, we can

compute the optimal solution via an exhaustive search.

Fig. 8. Optimization. (a) Inverse surrogate values over two parameters of

Expo-Square, the exponent κ , and the duty cycle χ . The optimal parame-

ters can be found by minimizing the surrogate (or maximizing the inverse

surrogate). (b) The optimum inverse surrogate values for various coding

schemes. The optimum value for each coding scheme is determined by

finding its optimal parameters.

In the second step, the optimal coding scheme Copt is deter-

mined by simply finding the scheme (with the optimized parame-

ters) that achieves the minimum value of the surrogate:

Copt = arg min
C

ΔτS (C (Popt )). (18)

Figure 8(b) shows Δτ−1
S over the search space where each coding

scheme’s parameters are optimized. Among the 12 coding schemes

considered in our search space, the Expo-Square scheme achieves

the best performance, with three times higher precision as com-

pared to the conventional Sinusoid-Sinusoid coding scheme. Expo-

Square denotes the coding scheme with exponential modulation,

and square demodulation function. The explicit forms of these

functions are listed in Table 3. The relevant parameters of Expo-

Square are κ, the exponent of the modulation function, χ , the duty

cycle of the demodulation function, and f0, the modulation fre-

quency. For detailed equations, please refer to the supplementary

technical report.

Dependence of Relative Coding Scheme Performance on

Lifetime Range. The relative coding scheme performance de-

pends on the range of lifetimes considered during the optimiza-

tion. Given the low computational complexity of the proposed sur-

rogate, it is possible to perform such optimization for any set of

coding schemes with a different set of parameters, and for a dif-

ferent range of lifetimes, depending on the application. For more

optimization results with other lifetime ranges, please see the sup-

plementary technical report.

6.1 Unipolar and Bipolar Demodulation Functions

Demodulation functions in FD-FLIM can be unipolar (0 ≤ D (t ) ≤
1) or bipolar (−1 ≤ D (t ) ≤ 1). For example, a FD-FLIM system us-

ing an image intensifier can implement unipolar (positive) demod-

ulation functions, such as a positive sinusoid, 0.5 + 0.5 cos(2π f0t ).
On the other hand, a lock-in amplifier-based FD-FLIM system

can implement bipolar demodulation functions, such as a zero-

mean sinusoid, cos(2π f0t ). Lock-in detection, in general, has bet-

ter photon efficiency than image intensifiers (Philip and Carlsson

2003), since bipolar functions use the entire incident flux for FLIM

estimation.

We compare the performance between unipolar and bipolar de-

modulation functions for the Sinusoid-Sinusoid and Expo-Square
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Fig. 9. Performance comparison between unipolar and bipolar de-

modulation functions. Coding schemes with Unipolar and bipolar de-

modulation functions are compared in terms of mean lifetime error

(Emean [Δτ ]). Sinusoid-Sinusoid and Expo-Square coding schemes are

used for comparison, for τ = 7ns. The optimal parameters for Expo-Square

with unipolar demodulation function is also used for the bipolar demodu-

lation case for comparison. Figure 9(a) shows unipolar and bipolar demod-

ulation functions used for Expo-Square. As shown in Figure 9(b), coding

schemes with bipolar demodulation functions show better performance.

coding schemes. For Expo-Square with unipolar demodulation

function, two parameters, κ and χ are optimized by surrogate, and

the same parameters are used for the bipolar demodulation case

for comparison. Figure 9(a) shows unipolar and bipolar demodu-

lation functions used for Expo-Square. As shown in Figure 9(b),

coding schemes with bipolar demodulation functions achieve bet-

ter performance than unipolar demodulation functions. This is due

to efficient use of photons for both positive and negative lobes as

well as increased amplitudes in the case of bipolar demodulation

functions. It is interesting to note that Expo-Square with unipolar

demodulation performs better as compared to Sinusoid-Sinusoid

with bipolar demodulation, at their respective optimal frequencies.

For the following analysis, we limit our scope to unipolar demod-

ulation functions for ease of analysis and noise standard deviation

computation. The same analysis can be extended to bipolar demod-

ulation functions.

6.2 Robustness of Coding Schemes to Signal Distortions

In practice, it is challenging to create perfect desired signal shapes

for coding schemes due to hardware limitations. The distortion

in signal shapes for coding schemes degrades coding scheme

performance. We tested robustness of coding schemes to signal

shape distortion. We model the hardware impulse response

causing signal distortion as a low-pass (Gaussian) filter. We distort

the modulation and demodulation functions by applying Gaussian

filters with different sizes. The size of the Gaussian filter (amount

of low-pass filtering) is changed from 0% to 20%, where 20% means

that the filter size is 20% of a modulation period of Expo-Square.

For each amount of low-pass filtering, the same size of the filter is

applied to all coding schemes. The correlation values are obtained

with these distorted coding schemes and photon noise is added

to the measurements. Figure 10(a) shows distorted modulation

and demodulation functions for Expo-Square, with three different

amounts of low-pass filtering. For distorted waveforms, we

used look-up tables (built by calibrating the system’s distorted

impulse response) for decoding lifetimes. Figure 10(b) shows the

Fig. 10. Robustness of coding schemes to signal distortion. Coding

scheme performance is compared when different amounts of low-pass fil-

tering is applied to either modulation or demodulation function. Photon

noise is added to the measurements and a look-up table for decoding life-

time is created by calibration. Inverse mean lifetime error is compared be-

tween coding schemes. The performance of every scheme degrades as the

distortion level increases.

inverse mean lifetime error when the amount of low-pass filtering

changes from 0% to 20%. The performance of each coding scheme

degrades as the distortion level increases.

Different Types of Signal Distortion and Decoding With-

out Calibration. In some scenarios, the signal distortion is not

modeled as a low-pass filtering. For example, often digital circuits

are used for generating demodulation functions in a sinusoid cod-

ing scheme. The resulting demodulation function (ideally a square

wave) has extra harmonics, resulting in a distorted sinusoid. How-

ever, the extra harmonics are canceled out by the sinusoid modu-

lation function in correlation. In this case, the lifetime can be esti-

mated by sinusoid coding scheme without calibration.

7 VALIDATION BY SIMULATIONS

In this section, we use simulations to demonstrate the capability

of the proposed surrogate as an analysis and design tool for FD-

FLIM coding design. To this end, we evaluated the performance

of various FD-FLIM coding schemes via simulations, and com-

pared the results with our surrogate prediction results. As exam-

ple test cases, we use the fluorescence lifetime data of the brain

tissue (Figure 11(a) and (b)) which is used to characterize meta-

bolic changes for Glioblastoma Multiforme (a type of brain cancer)

study and another data of cells (Figure 11(c)) where fat cells are

differentiated from other cells by lifetime. The ground-truth fluo-

rescence lifetime image was acquired using a TD-FLIM approach.

The size of the image is 256 × 256. Since the lifetime range for

Figure 11(a) is relatively short, we artificially increased the lifetime

range linearly in Figure 11(b) to evaluate the performance of cod-

ing schemes on samples with relatively large lifetime range. For

each pixel and each coding scheme, we compute K = 3 intensity

values as captured by the sensor, based on the the image forma-

tion model (Equation (4)) with α = 48.6, γ = 5.1, andT = 0.1s. For

Figure 11(b), relatively short integration time, T = 0.005s, is used

to highlight performance difference in longer lifetime range. The

values of α and γ depend on imaging system properties, and were

computed based on typical FD-FLIM system parameters (Zhao

et al. 2011). Finally, we add noise to the computed intensity values,
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Fig. 11. Simulation-based comparisons between different coding schemes. Given ground truth fluorescence lifetime data, fluorescence lifetime

images are reconstructed using Sinusoid-Sinusoid, Delta-Square, and Expo-Square from the simulated captured intensities of brain tissue in original lifetime

range (a), same tissue in artificially increased lifetime range (b), and adipose tissue (c). In all cases, Expo-Square shows the best performance.

where the noise variance is estimated from the affine noise model,

including photon noise and read noise (Hasinoff et al. 2010).

Decoding. In the decoding stage, lifetime is estimated for each

pixel from the K noisy intensity values, and shown as a color-

coded fluorescence lifetime image. For K = 3 measurements, from

Equation (4), we can eliminate the unknowns α and β as follows:

F (τ ) =
�1 (τ ) −�2 (τ )

�2 (τ ) −�3 (τ )
=

B1 − B2

B2 − B3
, (19)

where F (τ ) is a known function determined by a coding scheme.

Given three intensity values B1, B2, and B3, we can estimate τ by

solving Equation (19). Refer to the supplementary technical report

for details.

We compared three coding schemes, Sinusoid-Sinusoid, per-

haps the most widely used FD-FLIM coding scheme (Philip and

Carlsson 2003), Delta-Square, a high-performance FD-FLIM cod-

ing scheme proposed recently in literature (Schlachter et al. 2009),

and Expo-Square, which is the optimal coding scheme accord-

ing to our surrogate computation. The optimal parameters Popt

for these coding schemes were computed using the surrogate for

the given lifetime ranges of the ground truth. The lifetime ranges

are [1.17ns, 1.82ns], [0.3ns, 16ns], and [1ns, 5ns] for Figure 11(a),
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Table 4. Estimated Optimal Parameter Sets

Sinusoid-Sinusoid Delta-Square Expo-Square

Brain tissue of Figure 11(a) { f0 = 72.7MHz} { f0 = 5.1MHz, χ = 0.34} { f0 = 8.9MHz, κ = 1.1e9s−1, χ = 0.34}
Brain tissue of Figure 11(b) { f0 = 11.1MHz} { f0 = 10.8MHz, χ = 0.36} { f0 = 3.0MHz, κ = 0.19e9s−1, χ = 0.35}

Adipose tissue { f0 = 32.9MHz} { f0 = 27.2MHz, χ = 0.39} { f0 = 4.1MHz, κ = 0.52e9s−1, χ = 0.34}
The optimal parameter sets of three coding schemes, for different tissues, were computed using our surrogate for simulations.

Fig. 12. Statistical results of the simulation and comparison with

the surrogate values. (a) Histograms of the normalized lifetime errors

((τ − τ̂ )/τ ) for different coding schemes. (b) Comparison of the normal-

ized mean absolute errors, MAE with the surrogate values ΔτS . The values

are normalized such that both values for Sinusoid-Sinusoid are 1. There is

a strong correlation between σΔτ and ΔτS .

(b), and (c), respectively. The optimal parameters for the different

schemes and different tissues are listed in Table 4. Note that the

optimal parameters for different schemes and different tissues are

significantly different.

Figure 11 shows the comparison between the fluorescence life-

time images obtained by three coding schemes. The black pix-

els in the images denote a region with no lifetime information.

The result with the Sinusoid-Sinusoid scheme is noisy, with low

SNR. In contrast, the lifetime image achieved by Delta-Square

and Expo-Square is closer to ground truth, with lower noise.

Figure 12(a) shows the histograms of normalized lifetime errors

(τ − τ̂ )/τ of the three coding schemes for brain tissue in original

lifetime range (Figure 11(a)). Expo-Square achieves the best per-

formance in terms of estimated lifetime precision and SNR. Fig-

ure 12(b) shows the comparison between the mean absolute er-

rors MAE and the surrogate values ΔτS . Both MAE and ΔτS are

normalized such that the corresponding values for the Sinusoid-

Sinusoid scheme is 1. As shown in the table, MAE and ΔτS show

strong correlation, thus suggesting that the proposed surrogate

can be used as an easy-to-compute and accurate objective func-

tion for coding scheme optimization.

8 HARDWARE PROTOTYPE AND EXPERIMENTS

8.1 Hardware Prototype

We developed a proof-of-concept hardware prototype that can

implement various FD-FLIM coding schemes (Figure 13). Since

most off-the-shelf FD-FLIM systems use a fixed coding scheme, we

develop a single-pixel-based prototype that can admit arbitrary

waveforms. A lifetime image of a sample is created by moving

the sample on translation stages, or by scanning light beam via

Fig. 13. Hardware prototype. Temporally modulated light from the laser

diode travels along the excitation path (in blue) and excites the fluorescent

sample. The fluorescent emission from the sample travels along the emis-

sion path (in green) and is detected by the avalanche photodiode. The final

measurements are obtained by correlation of the emission signal with the

demodulation signal from the function generator. The fluorescence life-

time is measured from the final measurements.

galvo-mirrors. In this article, we compare different coding schemes

in terms of the SNR or acquisition time per pixel. Although the

current prototype system results in slow acquisition due to

mechanical scanning, it serves as a test-bed for evaluating relative

coding scheme performance. An important next step, although

outside the scope of this article, is to implement the proposed cod-

ing schemes on optimized hardware for faster and low-cost FLIM

estimation.

Details of Hardware Setup. Our setup consists of a laser diode

(L450P1600MM, Thorlabs) of wavelength 450nm for illuminating

the sample of interest. The intensity of the laser diode is modulated

by a Siglent SDG 5162 arbitrary function generator for generating

arbitrary modulation functions. The function generator has two

channels: One is used for generating the modulation functions, and

the other for generating the demodulation functions. The modula-

tion signal from the function generator is amplified by the power

amplifier with 45dB gain (LZY-22+, Mini-Circuits) before applying

to the laser diode. For fair comparisons, we used the same average

source power and acquisition time for all coding schemes.

The light emitted by the laser diode is reflected by a dichroic

mirror and excites a fluorescent sample. A dichroic mirror, which

reflects the light below the cutoff wavelength and transmits the

light above it, is used to separate the emission signal from the

excitation signal. The fluorescent sample is mounted on a trans-

lation stage and can move along x and y directions for scanning

purposes. The translation stage is driven by a stepper controller
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Table 5. Estimated Optimal Parameter Sets

Sinusoid-Sinusoid Delta-Square Expo-Square

Coumarin 6 in ethanol { f0 = 41.2MHz} { f0 = 40.0MHz, χ = 0.4} { f0 = 8.6MHz, κ = 0.55e9s−1, χ = 0.34}
Rhodamine 110 in ethanol { f0 = 26.4MHz} { f0 = 33.3MHz, χ = 0.4} { f0 = 5.6MHz, κ = 0.35e9s−1, χ = 0.34}

Fluorescein in ethanol { f0 = 24.4MHz} { f0 = 30.4MHz, χ = 0.4} { f0 = 5.1MHz, κ = 0.32e9s−1, χ = 0.34}
The optimal parameter sets of three coding schemes, for three different solutions, were computed using our surrogate.

(MMC-203, Micronix USA). The emission light from the fluores-

cent sample passes through a bandpass filter (FB550-40, Thorlabs),

gets focused by a lens, and then detected by an avalanche photodi-

ode (APD430A2/M, Thorlabs). The bandpass filter is necessary to

block the excitation light (wavelength (λ) = 450nm) and to allow

only the emission light (λ ≈ 550nm). The avalanche photodiode

has a high responsivity around 600nm.

The emission signal detected at the APD is multiplied by the de-

modulation signal from the function generator using a frequency

mixer (ZX05-1L-S+, Mini-Circuits). The multiplied signal from the

frequency mixer is integrated using a low-pass filter with a 1kHz

passband (EF110, Thorlabs), digitized by a DAQ (USB-6000, Na-

tional Instruments) and then recorded by a computer. Note that the

demodulation process (computing the correlation of the fluores-

cence emission with a demodulation signal) is performed electron-

ically in our prototype. In practice, the demodulation can be per-

formed with an image intensifier or lock-in amplifiers (Philip and

Carlsson 2003), in full-frame FD-FLIM systems. Figure 13 shows

the path taken by light from the source to the sample (the excita-

tion path) and from the sample to the sensor (the emission path).

8.2 Experimental Results

8.2.1 Single Pixel Experiment. We measured the lifetimes of

three fluorescent samples: Coumarin 6 in ethanol, Rhodamine 110

in ethanol, and Fluorescein in ethanol with the coding schemes used

for simulation: Sinusoid-Sinusoid, Delta-Square, and Expo-Square.

The concentrations of all three solutions were 0.1mM. The life-

times of Coumarin 6 in ethanol, Rhodamine 110 in ethanol, and

Fluorescein in ethanol are known as 2.5ns, 3.9ns, and 4.25ns, re-

spectively (Magde et al. 1999; Shaner et al. 2013; Wilkerson Jr. et al.

1993).

Computing Optimal Parameters. The optimal parameter sets

Popt of three coding schemes, for each of the three solutions, were

computed using our surrogate. We used known lifetime values for

the surrogate computation, but, in general, we can use the ap-

proximate lifetime range. The computed optimal parameter sets of

three coding schemes, for three solutions, are in Table 5. The data

acquisition time for each measurement was 10ms, and a 174mA

DC signal was used to drive the laser diode for all tested coding

schemes for the same average source power constraint. The wave-

forms were band-limited since the maximum output frequency of

the function generator in our setup is limited to 160MHz.

Results: We measured the lifetimes at a single position for each

sample 1,000 times, and compared the mean absolute errors of

the repeated measurements for the three coding schemes. Fig-

ure 14 shows the histograms and the mean absolute errors of

the measured lifetimes. For all solutions, Expo-Square achieves

approximately three times better performance as compared to

Sinusoid-Sinusoid in terms of the mean absolute error of the mea-

sured lifetimes, which is consistent with the surrogate prediction.

8.2.2 Scanning Experiments. In order to compare the perfor-

mance of different schemes over full-frame fluorescence lifetime

images, we created six solutions with different lifetimes by mix-

ing Coumarin 6 and Fluorescein in ethanol in different proportions

in cuvettes. The concentration of Coumarin 6 varies linearly from

47.8µM to 13.7µM, while that of Fluorescein varies linearly from

0.0µM to 11.9µM. Each solution in a cuvette was scanned with our

system to get a 50 × 50 lifetime image. We compared two cod-

ing schemes, Sinusoid-Sinusoid and Expo-Square. Popt = { f0 =
30.6MHz} and Popt = { f0 = 6.8MHz, a = 0.4e9s−1, χ = 0.34} for

Sinusoid-Sinusoid and Expo-Square, respectively, were computed

using the surrogate based on the lifetime range [2.5ns, 3.9ns]. The

data acquisition time for each pixel was 12.5ms, and we used the

same 168mA DC signal to drive the laser diode for two coding

schemes to ensure the same average source power.

Figure 15(a) shows the fluorescence lifetime images obtained by

Sinusoid-Sinusoid (upper) and Expo-Square (lower). Six 50 × 50

lifetime images for the six solutions were combined to form a

300 × 50 image. Expo-Square shows more uniform lifetime estima-

tion results than Sinusoid-Sinusoid, whose lifetime image suffers

from strong noise. Figure 15(b) shows the mean lifetime mτ and

the mean absolute errors, MAE, of the measured lifetimes for six

solutions. mτ increases as the relative proportion of Fluorescein

increases and that of Coumarin 6 decreases.

The measurement mean absolute error, MAE, for Sinusoid-

Sinusoid is significantly higher than that for Expo-Square. As a

result, the error bars for Sinusoid-Sinusoid overlap across cuvettes,

thus making it challenging to differentiate materials with similar

lifetimes (neighboring images). This is demonstrated by perform-

ing an edge detection on the composite lifetime images for both

schemes, as shown in Figure 15(c). For Sinusoid-Sinusoid, many

spurious edges are detected within each individual sub-image, in

addition to the desired boundary between the solutions. This is be-

cause the variation in the estimated lifetimes within each image is

large, making it difficult to classify the solutions based on the esti-

mated lifetimes. For Expo-Square, no clear edges are found except

the boundaries between the solutions. Therefore, the solutions can

be classified well according to the estimated lifetimes.

Figure 1(d) and Figure 16(a) show FLIM results on fluorescent

objects made with fluorescent tape and a fluorescent slide such

that each object has different lifetimes for the foreground (flu-

orescent tape) and the background (fluorescent slide). The life-

times were measured by Sinusoid-Sinusoid and Expo-Square. The

data acquisition time for each pixel of the star (Figure 1(d)) and

the bird (Figure 16(a) upper) samples was 0.8ms, while that for

the logo sample (Figure 16(a) lower) was 1ms. We used very
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Fig. 14. Single pixel fluorescence lifetime estimation. Lifetimes were measured at single positions for three solutions: (a) Coumarin 6 in ethanol,

(b) Rhodamin 110 in ethanol, and (c) Fluorescein in ethanol, using three coding schemes, Sinusoid-Sinusoid, Delta-Square, and Expo-Square. For each

solution and each coding scheme, lifetimes were measured 1,000 times, and the histogram and the mean absolute error of the repeated measurements were

obtained. Normal distributions were fitted to the histograms for visual comparison. Expo-Square shows approximately three times lower mean absolute

error as compared to Sinusoid-Sinusoid, given the same average power and capture time.

Fig. 15. Scanning experimental results with solutions. (a) Fluores-

cence lifetime images of six solutions obtained by Sinusoid-Sinusoid

(upper) and Expo-Square (lower). (b) Mean values mτ and mean absolute

errors MAE of the measured lifetimes for six solutions. (c) Edge detection

results of (a) after applying the same amount of smoothing to both images.

Expo-Square achieves considerably higher SNR as compared to Sinusoid-

Sinusoid, resulting in robust determination of edges across the solution

boundaries.

Fig. 16. Visual comparisons of fluorescence lifetime images. (a) Solid

fluorescent samples with two lifetimes were made using the fluorescent

tape (foreground) and the fluorescent slide (background). The fluores-

cence lifetime images were obtained by two coding schemes, (b) Sinusoid-

Sinusoid and (c) Expo-Square. The boundaries between the foreground

and background are invisible with Sinusoid-Sinusoid but clear with Expo-

Square.

low light source power (151mA from the laser diode current

controller for the star and the bird samples and 155mA for the

logo sample), for both coding schemes. The optimal parameter

sets determined for these scenes were Popt = { f0 = 32.5MHz}
and Popt = { f0 = 6.8MHz, a = 0.44e9s−1, χ = 0.34} for Sinusoid-

Sinusoid and Expo-Square, respectively. The boundaries between

the foreground and the background are nearly invisible with

Sinusoid-Sinusoid (Figure 1(e) and Figure 16(b)) but clearly dis-

cernible with Expo-Square (Figure 1(g) and Figure 16(c)).

8.2.3 Comparison of Data Acquisition Times. We compare the

data acquisition times of various schemes, in order to achieve a

fixed desired lifetime precision. Figure 17(a) compares the data
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Fig. 17. Data acquisition time and lifetime precision comparison.

(a) Data acquisition time to achieve the same lifetime precision. Expo-

Square can achieve the same precision as Sinusoid-Sinusoid with only one-

seventh data acquisition time. (b) Relationship between the mean absolute

error, MAE, of the measured lifetimes for Rhodamine 110 in ethanol with

data acquisition time. Expo-Square requires considerably shorter acquisi-

tion time than Sinusoid-Sinusoid to achieve the same SNR.

acquisition times between three coding schemes (Sinusoid-

Sinusoid, Delta-Square, and Expo-Square) to achieve the same

lifetime precision (mean absolute errors) for three solutions

(Coumarin 6, Rhodamine 110, and Fluorescein in ethanol). The

desired mean absolute error was fixed to the mean absolute er-

ror achieved by the Sinusoid-Sinusoid with 10ms data acquisition

time: 0.26ns, 0.34ns, and 1.19ns for Coumarin 6, Rhodamine 110,

and Fluorescein, respectively. Expo-Square can achieve the same

precision as Sinusoid-Sinusoid with only one-seventh data acquisi-

tion time. Figure 17(b) shows the relationship between the lifetime

precision and the data acquisition time. The mean absolute errors,

MAE, of the measured lifetimes of Rhodamine 110 in ethanol were

plotted against data acquisition time for three coding schemes.

Expo-Square achieves high precision (low mean absolute error)

even at very short acquisition times, thus leading to considerable

speed-ups in data capture, given a desired level of SNR.

9 LIMITATIONS AND FUTURE WORK

Objective for Lifetime Precision for a Multi-Exponential

Decay. The mean lifetime error and the surrogate proposed in

the article are intended for mono-exponential decay (single life-

time). However, for certain materials, the fluorescence emission

profile is a linear combination of multiple exponential functions

(Lakowicz 2006). An important next step is to extend the ap-

proaches developed in this article, and design an objective for

lifetime precision, and code optimization procedures for materials

with multi-exponential fluorescence lifetime decay.

Surrogate for More Than Three Measurements. The surro-

gate, as defined in Equation (16), is valid only for K = 3 measure-

ments since the cross product in Equation (13) is not generally de-

fined when K > 3. While this is not a strong practical limitation

since the relative performance of two coding schemes remains ap-

proximately the same irrespective of K , a promising direction of

future research is to derive a surrogate for K > 3 measurements.

Optimization of the Surrogate. The proposed surrogate as an

objective function is non-convex and non-smooth. Hence, it is

challenging to obtain globally optimal solutions for both modu-

lation and demodulation functions in the general case (i.e., when

the search space contains all possible coding schemes). A com-

pelling line of research is to seek potentially sub-optimal solutions

in a narrowed search space by incorporating various physical con-

straints like the maximum peak power and the maximum system

bandwidth.

ACKNOWLEDGMENTS

The authors would also like to thank Felipe Gutierrez Barragan for

calibration of the setup.

REFERENCES
Diego Airado-Rodríguez, Teresa Galeano-Díaz, Isabel Durán-Merás, and Jens Petter

Wold. 2009. Usefulness of fluorescence excitation-emission matrices in combina-
tion with PARAFAC, as fingerprints of red wines. Journal of Agricultural and Food
Chemistry 57, 5 (2009), 1711–1720.

Syed Abdullah Aljunid, Gleb Maslennikov, Yimin Wang, Hoang Lan Dao, Valerio
Scarani, and Christian Kurtsiefer. 2013. Excitation of a single atom with expo-
nentially rising light pulses. Physical Review Letters 111, 10 (2013), 103001.

Philippe I. H. Bastiaens and Anthony Squire. 1999. Fluorescence lifetime imaging mi-
croscopy: Spatial resolution of biochemical processes in the cell. Trends in Cell
Biology 9, 2 (1999), 48–52.

Wolfgang Becker. 2014. The bh TCSPC Handbook. Becker & Hickl.
Oscar Beijbom, Tali Treibitz, David I. Kline, Gal Eyal, Adi Khen, Benjamin Neal, Yossi

Loya, B. Greg Mitchell, and David Kriegman. 2016. Improving automated annota-
tion of benthic survey images using wide-band fluorescence. Scientific Reports 6
(2016), 23166.

Mikhail Y. Berezin and Samuel Achilefu. 2010. Fluorescence lifetime measurements
and biological imaging. Chemical Reviews 110, 5 (2010), 2641–2684.

Ayush Bhandari, Christopher Barsi, and Ramesh Raskar. 2015a. Blind and reference-
free fluorescence lifetime estimation via consumer time-of-flight sensors. Optica
2, 11 (Nov. 2015), 965–973. DOI:https://doi.org/10.1364/OPTICA.2.000965

Ayush Bhandari, Christopher Barsi, and Ramesh Raskar. 2015b. Blind and reference-
free fluorescence lifetime estimation via consumer time-of-flight sensors. Optica
2, 11 (2015), 965–973.

Ayush Bhandari and Ramesh Raskar. 2016. Signal processing for time-of-flight imag-
ing sensors: An introduction to inverse problems in computational 3-D imaging.
IEEE Signal Processing Magazine 33, 5 (2016), 45–58.

M. J. Booth and T. Wilson. 2004. Low-cost, frequency-domain, fluorescence lifetime
confocal microscopy. Journal of Microscopy 214, 1 (2004), 36–42.

A. Colasanti, A. Kisslinger, G. Fabbrocini, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti,
and F. Villani. 2000. MS-2 fibrosarcoma characterization by laser induced autoflu-
orescence. Lasers in Surgery and Medicine 26, 5 (2000), 441–448.

Daniela Comelli, Cosimo D’Andrea, Gianluca Valentini, Rinaldo Cubeddu, Chiara
Colombo, and Lucia Toniolo. 2004. Fluorescence lifetime imaging and spec-
troscopy as tools for nondestructive analysis of works of art. Applied Optics 43, 10
(2004), 2175–2183.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-
tionary Computation 6, 2 (2002), 182–197.

Michelle A. Digman, Valeria R. Caiolfa, Moreno Zamai, and Enrico Gratton. 2008. The
phasor approach to fluorescence lifetime imaging analysis. Biophysical Journal 94,
2 (2008), L14–L16.

L. A. Donaldson and K. Radotic. 2013. Fluorescence lifetime imaging of lignin autoflu-
orescence in normal and compression wood. Journal of Microscopy 251, 2 (2013),
178–187.

ACM Transactions on Graphics, Vol. 38, No. 3, Article 26. Publication date: June 2019.

https://doi.org/10.1364/OPTICA.2.000965


26:16 • J. Lee et al.

Alan Elder, Simon Schlachter, and Clemens F. Kaminski. 2008. Theoretical investiga-
tion of the photon efficiency in frequency-domain fluorescence lifetime imaging
microscopy. JOSA A 25, 2 (2008), 452–462.

Dan Elson, Jose Requejo-Isidro, Ian Munro, Fred Reavell, Jan Siegel, Klaus Suhling,
Paul Tadrous, Richard Benninger, Peter Lanigan, James McGinty, et al. 2004. Time-
domain fluorescence lifetime imaging applied to biological tissue. Photochemical
& Photobiological Sciences 3, 8 (2004), 795–801.

Alessandro Esposito, Hans Gerritsen, Thierry Oggier, Felix Lustenberger, and Fred
S. Wouters. 2006. Innovating lifetime microscopy: A compact and simple tool for
life sciences, screening, and diagnostics. Journal of Biomedical Optics 11, 3 (2006),
034016.

Alessandro Esposito, Hans C. Gerritsen, and Fred S. Wouters. 2007. Optimizing
frequency-domain fluorescence lifetime sensing for high-throughput applica-
tions: Photon economy and acquisition speed. JOSA A 24, 10 (2007), 3261–3273.

A. Esposito, T. Oggier, H. C. Gerritsen, F. Lustenberger, and F. S. Wouters. 2005. All-
solid-state lock-in imaging for wide-field fluorescence lifetime sensing. Optics Ex-
press 13, 24 (2005), 9812–9821.

Ying Fu, Antony Lam, Yasuyuki Matsushita, Imari Sato, and Yoichi Sato. 2014. Inter-
reflection removal using fluorescence. In European Conference on Computer Vision.
Springer, 203–217.

Mohit Gupta, Andreas Velten, Shree K. Nayar, and Eric Breitbach. 2018. What are op-
timal coding functions for time-of-flight imaging? ACM Transactions on Graphics
(TOG) 37, 2 (2018), 13.

Shuai Han, Yasuyuki Matsushita, Imari Sato, Takahiro Okabe, and Yoichi Sato. 2012.
Camera spectral sensitivity estimation from a single image under unknown illu-
mination by using fluorescence. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’12). IEEE, 805–812.

Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Patrice Horaud. 2012. Time-of-
Flight Cameras: Principles, Methods and Applications. Springer Science & Business
Media.

Samuel W. Hasinoff, Frédo Durand, and William T. Freeman. 2010. Noise-optimal cap-
ture for high dynamic range photography. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’10). IEEE, 553–560.

Felix Heide, Matthias B. Hullin, James Gregson, and Wolfgang Heidrich. 2013. Low-
budget transient imaging using photonic mixer devices. ACM Transactions on
Graphics (ToG) 32, 4 (2013), 45.

Felix Heide, Lei Xiao, Andreas Kolb, Matthias B. Hullin, and Wolfgang Heidrich. 2014.
Imaging in scattering media using correlation image sensors and sparse convolu-
tional coding. Optics Express 22, 21 (2014), 26338–26350.

J. Michael Hollas. 2004. Modern Spectroscopy. John Wiley & Sons.
Matthias B. Hullin, Martin Fuchs, Ivo Ihrke, Hans-Peter Seidel, and Hendrik P.

A. Lensch. 2008. Fluorescent immersion range scanning. ACM Transactions on
Graphics 27, 3 (Aug. 2008), Article 87, 10 pages. DOI:https://doi.org/10.1145/
1360612.1360686

Matthias B. Hullin, Johannes Hanika, Boris Ajdin, Hans-Peter Seidel, Jan Kautz, and
Hendrik P. A. Lensch. 2010. Acquisition and analysis of bispectral bidirectional
reflectance and reradiation distribution functions. ACM Transactions on Graphics
29, 4 (July 2010), Article 97, 7 pages. DOI:https://doi.org/10.1145/1778765.1778834

Moon S. Kim, Byoung-Kwan Cho, Alan M. Lefcourt, Yud-Ren Chen, and Sukwon
Kang. 2008. Multispectral fluorescence lifetime imaging of feces-contaminated
apples by time-resolved laser-induced fluorescence imaging system with tunable
excitation wavelengths. Applied Optics 47, 10 (2008), 1608–1616.

Joseph R. Lakowicz. 2006. Principles of Fluorescence Spectroscopy. Springer.
R. Lange. 2000. 3D Time of Flight Distance Measurement with Custom Solid State

Image Sensors in CMOS, CCD Technology. https://books.google.com/books?id=
upMuHwAACAAJ

Lea Lenhardt, Rasmus Bro, Ivana Zeković, Tatjana Dramićanin, and Miroslav D.
Dramićanin. 2015. Fluorescence spectroscopy coupled with PARAFAC and PLS
DA for characterization and classification of honey. Food Chemistry 175 (2015),
284–291.

Yuxiang Lin and Arthur F. Gmitro. 2010. Statistical analysis and optimization of
frequency-domain fluorescence lifetime imaging microscopy using homodyne
lock-in detection. JOSA A 27, 5 (2010), 1145–1155.

Douglas Magde, Gail E. Rojas, and Paul G. Seybold. 1999. Solvent dependence of the
fluorescence lifetimes of xanthene dyes. Photochemistry and Photobiology 70, 5
(1999), 737–744.

John A. Nelder and Roger Mead. 1965. A simplex method for function minimization.
The Computer Journal 7, 4 (1965), 308–313.

Austin Nevin, Daniela Comelli, Gianluca Valentini, Demetrios Anglos, Aviva Burn-
stock, Sharon Cather, and Rinaldo Cubeddu. 2007. Time-resolved fluorescence
spectroscopy and imaging of proteinaceous binders used in paintings. Analytical
and Bioanalytical Chemistry 388, 8 (2007), 1897–1905.

Lucio Pancheri, Nicola Massari, and David Stoppa. 2013. SPAD image sensor with
analog counting pixel for time-resolved fluorescence detection. IEEE Transactions
on Electron Devices 60, 10 (2013), 3442–3449.

Johan Philip and Kjell Carlsson. 2003. Theoretical investigation of the signal-to-noise
ratio in fluorescence lifetime imaging. JOSA A 20, 2 (2003), 368–379.

Asima Pradhan, Prabir Pal, Gilles Durocher, Luc Villeneuve, Antonia Balassy,
Féridoun Babai, Louis Gaboury, and Louise Blanchard. 1995. Steady state and
time-resolved fluorescence properties of metastatic and non-metastatic malignant
cells from different species. Journal of Photochemistry and Photobiology B: Biology
31, 3 (1995), 101–112.

J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A.
A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, et al. 2004. High-speed
wide-field time-gated endoscopic fluorescence-lifetime imaging. Optics Letters 29,
19 (2004), 2249–2251.

Imari Sato, Takahiro Okabe, and Yoichi Sato. 2012. Bispectral photometric stereo based
on fluorescence. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’12). IEEE, 270–277.

S. Schlachter, A. D. Elder, A. Esposito, G. S. Kaminski, J. H. Frank, L. K. Van Geest, and
C. F. Kaminski. 2009. mhFLIM: Resolution of heterogeneous fluorescence decays
in widefield lifetime microscopy. Optics Express 17, 3 (2009), 1557–1570.

L. K. Seah, U. S. Dinish, W. F. Phang, Z. X. Chao, and V. M. Murukeshan. 2005. Fluo-
rescence optimisation and lifetime studies of fingerprints treated with magnetic
powders. Forensic Science International 152, 2–3 (2005), 249–257.

L. K. Seah, P. Wang, V. M. Murukeshan, and Z. X. Chao. 2006. Application of fluo-
rescence lifetime imaging (FLIM) in latent finger mark detection. Forensic Science
International 160, 2–3 (2006), 109–114.

Nathan C. Shaner, Gerard G. Lambert, Andrew Chammas, Yuhui Ni, Paula J. Cranfill,
Michelle A. Baird, Brittney R. Sell, John R. Allen, Richard N. Day, Maria Israelsson,
et al. 2013. A bright monomeric green fluorescent protein derived from Branchios-
toma lanceolatum. Nature Methods 10, 5 (2013), 407.

Wen Shi, Xiaohua Li, and Huimin Ma. 2014. Fluorescent probes and nanoparticles for
intracellular sensing of pH values. Methods and Applications in Fluorescence 2, 4
(2014), 042001.

Ewa Sikorska, Tomasz Górecki, Igor V. Khmelinskii, Marek Sikorski, and Jacek Kozioł.
2005. Classification of edible oils using synchronous scanning fluorescence spec-
troscopy. Food Chemistry 89, 2 (2005), 217–225.

Shiwen Sun, Birgit Ungerböck, and Torsten Mayr. 2015. Imaging of oxygen in mi-
croreactors and microfluidic systems. Methods and Applications in Fluorescence 3,
3 (2015), 034002.

Virginia Torczon. 1997. On the convergence of pattern search algorithms. SIAM Jour-
nal on Optimization 7, 1 (1997), 1–25.

Tali Treibitz, Zak Murez, B. Greg Mitchell, and David Kriegman. 2012. Shape from
fluorescence. In European Conference on Computer Vision. Springer, 292–306.

Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan, Moungi
G. Bawendi, and Ramesh Raskar. 2012. Recovering three-dimensional shape
around a corner using ultrafast time-of-flight imaging. Nature Communications
3 (2012), 745.

Charles W. Wilkerson Jr., Peter M. Goodwin, W. Patrick Ambrose, John C. Martin, and
Richard A. Keller. 1993. Detection and lifetime measurement of single molecules
in flowing sample streams by laser-induced fluorescence. Applied Physics Letters
62, 17 (1993), 2030–2032.

Di Wu, Matthew O’Toole, Andreas Velten, Amit Agrawal, and Ramesh Raskar. 2012.
Decomposing global light transport using time of flight imaging. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 366–373.

Qiaole Zhao, Ian T. Young, and Jan Geert Sander De Jong. 2011. Photon budget analysis
for fluorescence lifetime imaging microscopy. Journal of Biomedical Optics 16, 8
(2011), 086007.

Received June 2018; revised November 2018; accepted March 2019

ACM Transactions on Graphics, Vol. 38, No. 3, Article 26. Publication date: June 2019.

https://doi.org/10.1145/1360612.1360686
https://doi.org/10.1145/1360612.1360686
https://doi.org/10.1145/1778765.1778834
https://books.google.com/books?id=upMuHwAACAAJ
https://books.google.com/books?id=upMuHwAACAAJ


Supplementary Technical Report:
Coding Scheme Optimization for Fast Fluorescence Lifetime Imaging

JONGHO LEE, JENU VARGHESE CHACKO, BING DAI, SYED AZER REZA, ABDUL KADER SAGAR,
KEVIN W. ELICEIRI, ANDREAS VELTEN, and MOHIT GUPTA, University of Wisconsin-Madison

1 OVERVIEW

This document provides derivations, explanations, and more re-

sults supporting the content of the article submission titled “Cod-

ing Scheme Optimization for Fast Fluorescence Lifetime Imaging.”

2 FD-FLIM VS. C-TOF IMAGING

In this section, we derive the detailed equations of the mea-

surement intensities for FD-FLIM and C-ToF imaging based on

their image formation models when the Sinusoid-Sinusoid coding

scheme is used.

2.1 Fluorescence Emission in FD-FLIM and Reflection in

C-ToF Imaging with Sinusoidal Illuminations

In FD-FLIM, the system’s impulse responseh(t ) is an exponentially

decaying function h(t ) = 1
τ e
− t

τ (t ≥ 0), while in C-ToF imaging it

is a shifted delta function h(t ) = δ (t − 2d
c ), where d is the scene

depth and c is the light speed. Let us assume that the light source

is modulated with a sinusoid:

M (t ) =
M0

2
(1 + cos (2π f0t )) , (1)

where M0 determines the source power. Then, the fluorescence

emission in FD-FLIM or the reflected light in C-ToF imaging at

time t observed at the sensor is a scaled and offset version of the

convolution of M (t ) and h(t ):

E (t ) = α

∫ ∞

−∞
M (s )h(t − s ) ds + γ , (2)

where α is a scale factor depending on system parameters and the

sample and γ is an offset corresponding to ambient illumination.

For the sake of simplicity, assume α = 1 and γ = 0. Then, in FD-

FLIM:

EF LI M (t ) =
M0

2

���
�
1 +

1√
1 + (2π f0τ )2

cos
(
2π f0t − tan−1 (2π f0τ )

)���
�
,

(3)

and in C-ToF imaging:

ET oF (t ) =
M0

2

(
1 + cos

(
2π f0t −

4π f0d

c

))
. (4)

In FD-FLIM, the lifetime τ is inherent in both the amplitude

attenuation 1/
√

1 + (2π f0τ )2 and the phase shift tan−1 (2π f0τ ) of

E (t )F LI M . In C-ToF imaging, the depth d is only in the phase shift,

4π f0d/c of ET oF (t ), as shown in Figure 1. Any periodic function

can be represented as a sum of sinusoids with different amplitudes

© 2019 Association for Computing Machinery.
0730-0301/2019/06-ART26 $15.00
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and frequencies. When given an arbitrary periodic waveform of

the incident light, the reflected light in C-ToF imaging is just the

phase-shifted version of the incident light, while the fluorescence

emission in FD-FLIM is very complicated due to different ampli-

tude attenuations and phase shifts for different frequency compo-

nents.

2.2 Intensity Vector Points in the Intensity Space

The intensity vector point [B1, . . . ,BK ] in the K-dim intensity

space is defined with

Bi =

∫
T
E (t )Di (t )dt (i = 1, . . . ,K ), (5)

where Di (t ) is the demodulation function with a phase shift of

ϕi = 2π (i − 1)/K . With a sinusoid demodulation function:

Di (t ) =
1

2
(1 + cos (2π f0t − ϕi )) (i = 1, . . . ,K ), (6)

in FD-FLIM:

BF LI M
i =

M0T

4

���
�
1 +

1

2
√

1 + (2π f0τ )2
cos

(
ϕi − tan−1 (2π f0τ )

)���
�
,

(7)

and in C-ToF imaging:

BT oF
i =

M0T

4

(
1 +

1

2
cos

(
ϕi −

4π f0d

c

))
. (8)

Figure 2 shows the several intensity vector points [B1,B2,B3]

in the 3D intensity space for FD-FLIM and C-ToF imaging. In

Figure 2(a), the intensity vector points corresponding to 16

different τ values uniformly sampled from [0ns, 15ns] with 1ns

step size are represented. In Figure 2(b), those corresponding to

16 different d values uniformly sampled from [0m, 1.5m] with

0.1m step size are represented. Two modulation frequencies,

10MHz (upper figure) and 100MHz (lower figure), are used. As

the modulation frequency increases, the inter-point distance

increases for relatively short τ ’s and decreases for relatively long

τ ’s in FD-FLIM. On the contrary, the inter-point distance always

increases for all d’s in C-ToF imaging.

3 MEAN LIFETIME ERROR VS. SURROGATE METRIC

FOR DIFFERENT LIFETIME RANGES

Figure 3 shows the comparison between (a) the mean lifetime er-

ror and (b) the surrogate metric for different coding schemes with

different lifetime ranges. Note that there is a strong correlation

between the mean lifetime error and surrogate metric, for all the

coding schemes and all the lifetime ranges, over the entire range

of modulation frequencies.
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Fig. 1. Fluorescence emission in FD-FLIM and reflection in C-ToF

imaging with sinusoidal illumination. The lifetime information τ is in

both amplitude attenuation b/a and phase-shift ϕ of the emitted light in

FD-FLIM, but the scene depth information d is only in phase-shift ϕ of the

reflected light in C-ToF imaging.

Fig. 2. Intensity vector points for FD-FLIM and C-ToF imaging in

the intensity space. (a) Intensity vector points for 16 different lifetimes

in FD-FLIM, and (b) intensity vector points for 16 different scene depths

in C-ToF imaging when the modulation frequency is 10MHz (upper figure)

and 100MHz (lower figure).

4 OPTIMIZATION FOR DIFFERENT LIFETIME RANGES

Figure 4 shows the inverse surrogate values (Figure 4(a)) and the

related optimal parameter sets (Figure 4(b)) of 12 coding schemes

for three different τ ranges [τ1,τ2] = [1ns, 3ns], [6ns, 8ns], and

[11ns, 13ns]. There are several key observations to notice. First,

the relative coding scheme performance depends on the lifetime.

For example, the coding scheme performance difference between

Square-Ham and Expo-Sinusoid decreases when the lifetime in-

creases. Second, the optimal modulation frequency for each cod-

ing scheme is inversely related to the lifetime. When the lifetime

increases, the optimal modulation frequency decreases. Third, the

optimal parameter value of κ for Expo decreases when the life-

time increases. We think this is related to the fact that when the

lifetime increases, κ should decrease to maximize the convolution

of Expo and the fluorescence response h(t ) = 1
τ e
− t

τ . Fourth, the

optimal modulation frequency of Expo-Square is relatively low as

compared with other coding schemes. This is another advantage of

using Expo-Square since most FD-FLIM systems are band-limited,

and there is, consequently, a limitation in using high modulation

frequency.

5 DECODING FLUORESCENCE LIFETIME

A unified lifetime-decoding framework applicable to any coding

scheme is essential. In this section, we explain how to decode life-

times from the measured intensities for the given coding scheme.

5.1 Analytical Approach

Since there are three unknowns, α , β , and τ , we need K ≥ 3 in-

tensity values to estimate the lifetime. From the image formation

model:

Bi = α�i (τ ) + β (i = 1, . . . ,K ), (9)

where

�i (τ ) =

∫
T

(∫ ∞

−∞

M (s )

τ
e

s−t
τ ds

)
Di (t ) dt (10)

is the fluorescence correlation function described completely by

the modulation functionM (t ) and the demodulation functionD (t ).
Di (t ) is the phase-shifted demodulation function by 2π (i − 1)/K .

We can construct the following equation when K = 3 with the as-

sumption that B2 � B3:

F (τ ) =
�1 (τ ) −�2 (τ )

�2 (τ ) −�3 (τ )
=

B1 − B2

B2 − B3
= b . (11)

Since the only interesting unknown is lifetime τ , we can remove

other unknowns by taking a ratio between two consecutive differ-

ences of Bi as represented in Equation (11). F (τ ) is a known func-

tion determined by a coding scheme, andb is the constant obtained

from the intensity measurements. We empirically verified that for

all 12 coding schemes used in the optimization, F (τ ) is bijective.

Therefore, if we know the coding scheme and the corresponding

intensity values, we can estimate the lifetime τ̂ by solving

τ̂ = arg min
τ
|F (τ ) − b | . (12)

For K > 3, we can consider
(
K
3

)
combinations of Equation (11) and

take the average of all the obtained lifetimes to estimate the final

τ̂ . This is one example to estimate the lifetime when K > 3, and

the optimal algorithm for solving for lifetime is out of our scope.

5.2 Table Look-Up Approach

For each coding scheme, save all pairs of the lifetime value τ and

the corresponding F (τ ) in Equation (11) in the table, and find the

best matching τ when b is given. Since F (τ ) is bijective, we can

estimate the lifetime τ from b without ambiguity.

RunTime Comparison Between Analytical Approach and

Table Look-Up Approach. For Sinusoid-Sinusoid and Delta-

Sinusoid, the closed-form solution exists for solving for τ . How-

ever, in general, there is no closed-form solution for the arbitrary

coding scheme, and an iteration-based solver is required to solve

for τ in the analytical approach. In this case, a table look-up ap-

proach is faster. According to our computation, the table look-up

approach with 0.01ns step size in τ index is about 20 times faster

than the analytical approach, and, as shown in Figure 5, is just as

precise.
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Fig. 3. Coding scheme performance comparison according to mean lifetime error and surrogate metric for different lifetime ranges. (a) In-

verse mean lifetime errors Emean [Δτ ]−1, and (b) inverse surrogate values Δτ −1
S

for three different lifetime ranges, [τ1, τ2] = [1ns, 3ns], [6ns, 8ns], and

[11ns, 13ns]. The surrogate values have a strong correlation with the mean lifetime error across various coding schemes, frequencies, and lifetime ranges.

Fig. 4. Optimization results for different τ ranges. (a) The inverse sur-

rogate values of different coding schemes for different τ ranges. Expo-

Square and Square-Square show good performances as compared with

other coding schemes. (b) The corresponding optimal parameter sets. The

optimal parameter values vary according to the τ ranges.

Fig. 5. Lifetime estimation results using analytical and table look-

up approaches. We added noise to the intensities obtained by two coding

schemes: (a) Sinusoid-Sinusoid and (b) Delta-Square (χ = 0.5). Lifetimes

can be estimated from the noisy intensities using the analytical approach

(red plot) and the table look-up approach (green plot). The table look-up

approach is much faster than the analytical approach while showing al-

most the same estimation results.

5.3 Fluorescence Correlation Functions for Various

Coding Schemes

Both analytical approach and table look-up approach require the

computation of the fluorescence correlation functions �i (τ ) (i =
1, . . . ,K ) for the given coding scheme to solve for τ using Equa-

tion (12). We describe the fluorescence correlation functions for
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the coding schemes used in Figure 3. The fluorescence correlation

functions for any other coding schemes can be derived similarly.

Please note that the fluorescence correlation functions can be also

computed numerically without analytical derivations. For the flu-

orescence correlation computation, we impose two constraints for

the coding schemes. The area under the curve of the modulation

function M (t ) for the period T0 is P , and the amplitude of the de-

modulation function D (t ) is between 0 and 1. We also assumeT in

Equation (10) satisfies T � T0.

Sinusoid-Sinusoid. The coding scheme is represented as

M (t ) =
P

T0
(1 + cos(2π f0t )) , (13)

Di (t ) =
1

2
(1 + cos(2π f0t − ϕi )) (i = 1, . . . ,K ), (14)

where ϕi = 2π (i − 1)/K . Then the fluorescence correlation func-

tions �i (τ ) (i = 1, . . . ,K ) for Sinusoid-Sinusoid are

�i (τ ) =
PT

2T0

���
�
1 +

1

2
√

1 + (2π f0τ )2
cos(ϕi − tan−1 (2π f0τ ))

���
�
.

(15)

Delta-Sinusoid. The coding scheme is represented as

M (t ) = P
∞∑

n=∞
δ (t − nT0), (16)

Di (t ) =
1

2
(1 + cos(2π f0t − ϕi )) (i = 1, . . . ,K ), (17)

where ϕi = 2π (i − 1)/K . Then the fluorescence correlation func-

tions �i (τ ), (i = 1, . . . ,K ) for Delta-Sinusoid are:

�i (τ ) =
PT

2T0

���
�
1 +

1√
1 + (2π f0τ )2

cos(ϕi − tan−1 (2π f0τ ))
���
�
. (18)

Delta-Square. The coding scheme is represented as

M (t ) = P
∞∑

n=∞
δ (t − nT0), (19)

Di (t ) =
1

2
(1 + sqr(2π f0t − ϕi , χ )) (i = 1, . . . ,K ), (20)

where ϕi = 2π (i − 1)/K , sqr is a square function whose amplitude

is between −1 and 1, and χ is a duty cycle of sqr. If we define

ti = T0 (i − 1)/K , the fluorescence correlation functions �i (τ ) (i =
1, . . . ,K ) for Delta-Square are

�i (τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

PT

T0

(
1−e (−T0

τ )
)
(
e−

ti
τ − e−

ti +χ
τ

)
, if ti + χ ≤ T0

PT

T0

(
1−e (−T0

τ )
)
(
1 − e−

ti −T0+χ
τ + e−

ti
τ − e−

T0
τ

)
, otherwise.

(21)

Delta-Ham. The coding scheme is represented as

M (t ) = P
∞∑

n=∞
δ (t − nT0), (22)

Di (t ) = Hamiltonian functions. (23)

Please refer to Gupta et al. (2018) for the equations of Hamilton-

ian functions. When K = 3, the fluorescence correlation functions

�i (τ ) (i = 1, 2, 3) for Delta-Ham are

�1 (τ ) = PT
6τ

T 2
0

e−
T0
3τ − e−

T0
2τ

1 + e−
T0
2τ

, (24)

�2 (τ ) = PT
6τ

T 2
0

1 − e−
T0
6τ

1 + e−
T0
2τ

, (25)

�3 (τ ) = PT ��
�

1

T0
+

6τ

T 2
0

e−
T0
3τ − e−

T0
6τ

1 + e−
T0
2τ

��
�
. (26)

Square-Square. The coding scheme is represented as

M (t ) =
P

2χ1T0
(1 + sqr(2π f0t , χ1)) , (27)

Di (t ) =
1

2
(1 + sqr(2π f0t − ϕi , χ2)) (i = 1, . . . ,K ), (28)

where ϕi = 2π (i − 1)/K , sqr is a square function whose amplitude

is between −1 and 1, and χ1 and χ2 are duty cycles of sqr for M (t )
and D (t ), respectively. If we define ti = T0 (i − 1)/K , d1 = χ1T0,

and d2 = χ2T0, the fluorescence correlation functions �i (τ ) (i =
1, . . . ,K ) for Square-Square are as follows:
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When 0 ≤ ti < d1,

�i (τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PT(
χ1T 2

0

)�
�
1−e−

T0
τ �

�

(
τ

(
1 − e

d1−T0
τ

) (
e−

ti +d2
τ − e−

ti
τ

)
+

(
1 − e−

T0
τ

)
d2

)
, if ti + d2 ≤ d1

PT(
χ1T 2

0

)�
�
1−e−

T0
τ �

�

(
τ

(
1 − e

d1−T0
τ

) (
e−

d1
τ − e−

ti
τ

)
+

(
1 − e−

T0
τ

)
(d1 − ti ) + τ

(
1 − e

d1
τ

) (
e−

ti +d2
τ − e−

d1
τ

))
, if d1 < ti + d2 ≤ T0

PT(
χ1T 2

0

)�
�
1−e−

T0
τ �

�

(
τ

(
1 − e

d1−T0
τ

) (
e−

ti +d2−T0
τ − 1 + e−

d1
τ − e−

ti
τ

)
+

(
1 − e−

T0
τ

)
(d1 + d2 −T0 ) + τ

(
1 − e

d1
τ

) (
e−

T0
τ − e−

d1
τ

))
, otherwise.

(29)
When d1 ≤ ti ≤ T0,

�i (τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PT(
χ1T 2

0

) (
1−e−

T0
τ

)
(
τ

(
1 − e

d1
τ

) (
e−

ti +d2
τ − e−

ti
τ

))
, if ti + d2 ≤ T0

PT(
χ1T 2

0

) (
1−e−

T0
τ

)
(
τ

(
1 − e

d1
τ

) (
e−

T0
τ − e−

ti
τ

)
+

(
1 − e−

T0
τ

)
(d2 + ti −T0) + τ

(
1 − e

d1−T0
τ

) (
e−

ti +d2−T0
τ − 1

))
, if T0 < ti + d2 ≤ T0 + d1

PT(
χ1T 2

0

) (
1−e−

T0
τ

)
(
τ

(
1 − e

d1
τ

) (
e−

ti +d2−T0
τ + e−

T0
τ − e−

d1
τ − e−

ti
τ

)
+

(
1 − e−

T0
τ

)
d1 + τ

(
1 − e

d1−T0
τ

) (
e−

d1
τ − 1

))
, otherwise.

(30)

Expo-Square. The coding scheme is represented as

M (t ) =
κP

eκT0 − 1
eκt (0 ≤ t ≤ T0,κ ≥ 0), (31)

Di (t ) =
1

2
(1 + sqr(2π f0t − ϕi , χ )) (i = 1, . . . ,K ), (32)

where ϕi = 2π (i − 1)/K , sqr is a square function whose amplitude is between −1 and 1, and χ is a duty cycle of sqr. If we define ti =
T0 (i − 1)/K , the fluorescence correlation functions �i (τ ) (i = 1, . . . ,K ) for Expo-Square are

�i (τ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

κPT
(κτ+1)(eκT0−1)

(
τ (eκT0−1)

1−e−
T0
τ

(
e−

ti
τ − e−

ti +χ

τ

)
+ 1

κ

(
eκ (ti+χ ) − eκti

))
, if ti + χ ≤ T0

κPT
(κτ+1)(eκT0−1)

(
τ (eκT0−1)

1−e−
T0
τ

(
1 − e−

ti −T0+χ

τ + e−
ti
τ − e−

T0
τ

)
+ 1

κ

(
eκ (ti−T0+χ ) − 1 + eκT0 − eκti

))
, otherwise.

(33)

5.4 Example

For Sinusoid-Sinusoid coding scheme when K = 3,

�1 (τ ) =
PT

2T0

(
1 +

1

2
(
1 + (2π f0τ )2

)
)
, (34)

�2 (τ ) =
PT

2T0

(
1 +

1

2
(
1 + (2π f0τ )2

)
(
cos

(
2π

3

)
+ sin

(
2π

3

)
2π f0τ

))
, (35)

�3 (τ ) =
PT

2T0

(
1 +

1

2
(
1 + (2π f0τ )2

)
(
cos

(
4π

3

)
+ sin

(
4π

3

)
2π f0τ

))
. (36)

Thus,

F (τ ) =
�1 (τ ) −�2 (τ )

�2 (τ ) −�3 (τ )
=

1 −
(
cos( 2π

3 ) + sin( 2π
3 )2π f0τ

)
(
cos( 2π

3 ) + sin( 2π
3 )2π f0τ

)
−

(
cos( 4π

3 ) + sin( 4π
3 )2π f0τ

) = b (37)

and

τ =

√
3

2π f0 (2b + 1)
. (38)

Although τ is solvable in a closed form in the Sinusoid-Sinusoid case, in general, it is required to solve non-linear equations for other coding

schemes.
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